Step |
Hyp |
Ref |
Expression |
0 |
|
cwwlksnon |
⊢ WWalksNOn |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cn0 |
⊢ ℕ0 |
3 |
|
vg |
⊢ 𝑔 |
4 |
|
cvv |
⊢ V |
5 |
|
va |
⊢ 𝑎 |
6 |
|
cvtx |
⊢ Vtx |
7 |
3
|
cv |
⊢ 𝑔 |
8 |
7 6
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
9 |
|
vb |
⊢ 𝑏 |
10 |
|
vw |
⊢ 𝑤 |
11 |
1
|
cv |
⊢ 𝑛 |
12 |
|
cwwlksn |
⊢ WWalksN |
13 |
11 7 12
|
co |
⊢ ( 𝑛 WWalksN 𝑔 ) |
14 |
10
|
cv |
⊢ 𝑤 |
15 |
|
cc0 |
⊢ 0 |
16 |
15 14
|
cfv |
⊢ ( 𝑤 ‘ 0 ) |
17 |
5
|
cv |
⊢ 𝑎 |
18 |
16 17
|
wceq |
⊢ ( 𝑤 ‘ 0 ) = 𝑎 |
19 |
11 14
|
cfv |
⊢ ( 𝑤 ‘ 𝑛 ) |
20 |
9
|
cv |
⊢ 𝑏 |
21 |
19 20
|
wceq |
⊢ ( 𝑤 ‘ 𝑛 ) = 𝑏 |
22 |
18 21
|
wa |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) |
23 |
22 10 13
|
crab |
⊢ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } |
24 |
5 9 8 8 23
|
cmpo |
⊢ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } ) |
25 |
1 3 2 4 24
|
cmpo |
⊢ ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } ) ) |
26 |
0 25
|
wceq |
⊢ WWalksNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } ) ) |