| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cwwlksnon | ⊢  WWalksNOn | 
						
							| 1 |  | vn | ⊢ 𝑛 | 
						
							| 2 |  | cn0 | ⊢ ℕ0 | 
						
							| 3 |  | vg | ⊢ 𝑔 | 
						
							| 4 |  | cvv | ⊢ V | 
						
							| 5 |  | va | ⊢ 𝑎 | 
						
							| 6 |  | cvtx | ⊢ Vtx | 
						
							| 7 | 3 | cv | ⊢ 𝑔 | 
						
							| 8 | 7 6 | cfv | ⊢ ( Vtx ‘ 𝑔 ) | 
						
							| 9 |  | vb | ⊢ 𝑏 | 
						
							| 10 |  | vw | ⊢ 𝑤 | 
						
							| 11 | 1 | cv | ⊢ 𝑛 | 
						
							| 12 |  | cwwlksn | ⊢  WWalksN | 
						
							| 13 | 11 7 12 | co | ⊢ ( 𝑛  WWalksN  𝑔 ) | 
						
							| 14 | 10 | cv | ⊢ 𝑤 | 
						
							| 15 |  | cc0 | ⊢ 0 | 
						
							| 16 | 15 14 | cfv | ⊢ ( 𝑤 ‘ 0 ) | 
						
							| 17 | 5 | cv | ⊢ 𝑎 | 
						
							| 18 | 16 17 | wceq | ⊢ ( 𝑤 ‘ 0 )  =  𝑎 | 
						
							| 19 | 11 14 | cfv | ⊢ ( 𝑤 ‘ 𝑛 ) | 
						
							| 20 | 9 | cv | ⊢ 𝑏 | 
						
							| 21 | 19 20 | wceq | ⊢ ( 𝑤 ‘ 𝑛 )  =  𝑏 | 
						
							| 22 | 18 21 | wa | ⊢ ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑛 )  =  𝑏 ) | 
						
							| 23 | 22 10 13 | crab | ⊢ { 𝑤  ∈  ( 𝑛  WWalksN  𝑔 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑛 )  =  𝑏 ) } | 
						
							| 24 | 5 9 8 8 23 | cmpo | ⊢ ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝑔 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑛 )  =  𝑏 ) } ) | 
						
							| 25 | 1 3 2 4 24 | cmpo | ⊢ ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝑔 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑛 )  =  𝑏 ) } ) ) | 
						
							| 26 | 0 25 | wceq | ⊢  WWalksNOn   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝑔 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑛 )  =  𝑏 ) } ) ) |