| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cxad |
⊢ +𝑒 |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cxr |
⊢ ℝ* |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
1
|
cv |
⊢ 𝑥 |
| 5 |
|
cpnf |
⊢ +∞ |
| 6 |
4 5
|
wceq |
⊢ 𝑥 = +∞ |
| 7 |
3
|
cv |
⊢ 𝑦 |
| 8 |
|
cmnf |
⊢ -∞ |
| 9 |
7 8
|
wceq |
⊢ 𝑦 = -∞ |
| 10 |
|
cc0 |
⊢ 0 |
| 11 |
9 10 5
|
cif |
⊢ if ( 𝑦 = -∞ , 0 , +∞ ) |
| 12 |
4 8
|
wceq |
⊢ 𝑥 = -∞ |
| 13 |
7 5
|
wceq |
⊢ 𝑦 = +∞ |
| 14 |
13 10 8
|
cif |
⊢ if ( 𝑦 = +∞ , 0 , -∞ ) |
| 15 |
|
caddc |
⊢ + |
| 16 |
4 7 15
|
co |
⊢ ( 𝑥 + 𝑦 ) |
| 17 |
9 8 16
|
cif |
⊢ if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) |
| 18 |
13 5 17
|
cif |
⊢ if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) |
| 19 |
12 14 18
|
cif |
⊢ if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) |
| 20 |
6 11 19
|
cif |
⊢ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) |
| 21 |
1 3 2 2 20
|
cmpo |
⊢ ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |
| 22 |
0 21
|
wceq |
⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |