Step |
Hyp |
Ref |
Expression |
0 |
|
cxad |
⊢ +𝑒 |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cxr |
⊢ ℝ* |
3 |
|
vy |
⊢ 𝑦 |
4 |
1
|
cv |
⊢ 𝑥 |
5 |
|
cpnf |
⊢ +∞ |
6 |
4 5
|
wceq |
⊢ 𝑥 = +∞ |
7 |
3
|
cv |
⊢ 𝑦 |
8 |
|
cmnf |
⊢ -∞ |
9 |
7 8
|
wceq |
⊢ 𝑦 = -∞ |
10 |
|
cc0 |
⊢ 0 |
11 |
9 10 5
|
cif |
⊢ if ( 𝑦 = -∞ , 0 , +∞ ) |
12 |
4 8
|
wceq |
⊢ 𝑥 = -∞ |
13 |
7 5
|
wceq |
⊢ 𝑦 = +∞ |
14 |
13 10 8
|
cif |
⊢ if ( 𝑦 = +∞ , 0 , -∞ ) |
15 |
|
caddc |
⊢ + |
16 |
4 7 15
|
co |
⊢ ( 𝑥 + 𝑦 ) |
17 |
9 8 16
|
cif |
⊢ if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) |
18 |
13 5 17
|
cif |
⊢ if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) |
19 |
12 14 18
|
cif |
⊢ if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) |
20 |
6 11 19
|
cif |
⊢ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) |
21 |
1 3 2 2 20
|
cmpo |
⊢ ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |
22 |
0 21
|
wceq |
⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |