Metamath Proof Explorer


Definition df-xko

Description: Define the compact-open topology, which is the natural topology on the set of continuous functions between two topological spaces. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion df-xko ko = ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑟 ∣ ( 𝑟t 𝑥 ) ∈ Comp } , 𝑣𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxko ko
1 vs 𝑠
2 ctop Top
3 vr 𝑟
4 ctg topGen
5 cfi fi
6 vk 𝑘
7 vx 𝑥
8 3 cv 𝑟
9 8 cuni 𝑟
10 9 cpw 𝒫 𝑟
11 crest t
12 7 cv 𝑥
13 8 12 11 co ( 𝑟t 𝑥 )
14 ccmp Comp
15 13 14 wcel ( 𝑟t 𝑥 ) ∈ Comp
16 15 7 10 crab { 𝑥 ∈ 𝒫 𝑟 ∣ ( 𝑟t 𝑥 ) ∈ Comp }
17 vv 𝑣
18 1 cv 𝑠
19 vf 𝑓
20 ccn Cn
21 8 18 20 co ( 𝑟 Cn 𝑠 )
22 19 cv 𝑓
23 6 cv 𝑘
24 22 23 cima ( 𝑓𝑘 )
25 17 cv 𝑣
26 24 25 wss ( 𝑓𝑘 ) ⊆ 𝑣
27 26 19 21 crab { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 }
28 6 17 16 18 27 cmpo ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑟 ∣ ( 𝑟t 𝑥 ) ∈ Comp } , 𝑣𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } )
29 28 crn ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑟 ∣ ( 𝑟t 𝑥 ) ∈ Comp } , 𝑣𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } )
30 29 5 cfv ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑟 ∣ ( 𝑟t 𝑥 ) ∈ Comp } , 𝑣𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) )
31 30 4 cfv ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑟 ∣ ( 𝑟t 𝑥 ) ∈ Comp } , 𝑣𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ) )
32 1 3 2 2 31 cmpo ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑟 ∣ ( 𝑟t 𝑥 ) ∈ Comp } , 𝑣𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ) ) )
33 0 32 wceq ko = ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑟 ∣ ( 𝑟t 𝑥 ) ∈ Comp } , 𝑣𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ) ) )