| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cxko |
⊢ ↑ko |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
ctg |
⊢ topGen |
| 5 |
|
cfi |
⊢ fi |
| 6 |
|
vk |
⊢ 𝑘 |
| 7 |
|
vx |
⊢ 𝑥 |
| 8 |
3
|
cv |
⊢ 𝑟 |
| 9 |
8
|
cuni |
⊢ ∪ 𝑟 |
| 10 |
9
|
cpw |
⊢ 𝒫 ∪ 𝑟 |
| 11 |
|
crest |
⊢ ↾t |
| 12 |
7
|
cv |
⊢ 𝑥 |
| 13 |
8 12 11
|
co |
⊢ ( 𝑟 ↾t 𝑥 ) |
| 14 |
|
ccmp |
⊢ Comp |
| 15 |
13 14
|
wcel |
⊢ ( 𝑟 ↾t 𝑥 ) ∈ Comp |
| 16 |
15 7 10
|
crab |
⊢ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } |
| 17 |
|
vv |
⊢ 𝑣 |
| 18 |
1
|
cv |
⊢ 𝑠 |
| 19 |
|
vf |
⊢ 𝑓 |
| 20 |
|
ccn |
⊢ Cn |
| 21 |
8 18 20
|
co |
⊢ ( 𝑟 Cn 𝑠 ) |
| 22 |
19
|
cv |
⊢ 𝑓 |
| 23 |
6
|
cv |
⊢ 𝑘 |
| 24 |
22 23
|
cima |
⊢ ( 𝑓 “ 𝑘 ) |
| 25 |
17
|
cv |
⊢ 𝑣 |
| 26 |
24 25
|
wss |
⊢ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 |
| 27 |
26 19 21
|
crab |
⊢ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } |
| 28 |
6 17 16 18 27
|
cmpo |
⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
| 29 |
28
|
crn |
⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
| 30 |
29 5
|
cfv |
⊢ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 31 |
30 4
|
cfv |
⊢ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
| 32 |
1 3 2 2 31
|
cmpo |
⊢ ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 33 |
0 32
|
wceq |
⊢ ↑ko = ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |