Step |
Hyp |
Ref |
Expression |
0 |
|
cxmet |
β’ βMet |
1 |
|
vx |
β’ π₯ |
2 |
|
cvv |
β’ V |
3 |
|
vd |
β’ π |
4 |
|
cxr |
β’ β* |
5 |
|
cmap |
β’ βm |
6 |
1
|
cv |
β’ π₯ |
7 |
6 6
|
cxp |
β’ ( π₯ Γ π₯ ) |
8 |
4 7 5
|
co |
β’ ( β* βm ( π₯ Γ π₯ ) ) |
9 |
|
vy |
β’ π¦ |
10 |
|
vz |
β’ π§ |
11 |
9
|
cv |
β’ π¦ |
12 |
3
|
cv |
β’ π |
13 |
10
|
cv |
β’ π§ |
14 |
11 13 12
|
co |
β’ ( π¦ π π§ ) |
15 |
|
cc0 |
β’ 0 |
16 |
14 15
|
wceq |
β’ ( π¦ π π§ ) = 0 |
17 |
11 13
|
wceq |
β’ π¦ = π§ |
18 |
16 17
|
wb |
β’ ( ( π¦ π π§ ) = 0 β π¦ = π§ ) |
19 |
|
vw |
β’ π€ |
20 |
|
cle |
β’ β€ |
21 |
19
|
cv |
β’ π€ |
22 |
21 11 12
|
co |
β’ ( π€ π π¦ ) |
23 |
|
cxad |
β’ +π |
24 |
21 13 12
|
co |
β’ ( π€ π π§ ) |
25 |
22 24 23
|
co |
β’ ( ( π€ π π¦ ) +π ( π€ π π§ ) ) |
26 |
14 25 20
|
wbr |
β’ ( π¦ π π§ ) β€ ( ( π€ π π¦ ) +π ( π€ π π§ ) ) |
27 |
26 19 6
|
wral |
β’ β π€ β π₯ ( π¦ π π§ ) β€ ( ( π€ π π¦ ) +π ( π€ π π§ ) ) |
28 |
18 27
|
wa |
β’ ( ( ( π¦ π π§ ) = 0 β π¦ = π§ ) β§ β π€ β π₯ ( π¦ π π§ ) β€ ( ( π€ π π¦ ) +π ( π€ π π§ ) ) ) |
29 |
28 10 6
|
wral |
β’ β π§ β π₯ ( ( ( π¦ π π§ ) = 0 β π¦ = π§ ) β§ β π€ β π₯ ( π¦ π π§ ) β€ ( ( π€ π π¦ ) +π ( π€ π π§ ) ) ) |
30 |
29 9 6
|
wral |
β’ β π¦ β π₯ β π§ β π₯ ( ( ( π¦ π π§ ) = 0 β π¦ = π§ ) β§ β π€ β π₯ ( π¦ π π§ ) β€ ( ( π€ π π¦ ) +π ( π€ π π§ ) ) ) |
31 |
30 3 8
|
crab |
β’ { π β ( β* βm ( π₯ Γ π₯ ) ) β£ β π¦ β π₯ β π§ β π₯ ( ( ( π¦ π π§ ) = 0 β π¦ = π§ ) β§ β π€ β π₯ ( π¦ π π§ ) β€ ( ( π€ π π¦ ) +π ( π€ π π§ ) ) ) } |
32 |
1 2 31
|
cmpt |
β’ ( π₯ β V β¦ { π β ( β* βm ( π₯ Γ π₯ ) ) β£ β π¦ β π₯ β π§ β π₯ ( ( ( π¦ π π§ ) = 0 β π¦ = π§ ) β§ β π€ β π₯ ( π¦ π π§ ) β€ ( ( π€ π π¦ ) +π ( π€ π π§ ) ) ) } ) |
33 |
0 32
|
wceq |
β’ βMet = ( π₯ β V β¦ { π β ( β* βm ( π₯ Γ π₯ ) ) β£ β π¦ β π₯ β π§ β π₯ ( ( ( π¦ π π§ ) = 0 β π¦ = π§ ) β§ β π€ β π₯ ( π¦ π π§ ) β€ ( ( π€ π π¦ ) +π ( π€ π π§ ) ) ) } ) |