Metamath Proof Explorer


Definition df-xmet

Description: Define the set of all extended metrics on a given base set. The definition is similar to df-met , but we also allow the metric to take on the value +oo . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion df-xmet ∞Met = ( π‘₯ ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( π‘₯ Γ— π‘₯ ) ) ∣ βˆ€ 𝑦 ∈ π‘₯ βˆ€ 𝑧 ∈ π‘₯ ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ βˆ€ 𝑀 ∈ π‘₯ ( 𝑦 𝑑 𝑧 ) ≀ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxmet ⊒ ∞Met
1 vx ⊒ π‘₯
2 cvv ⊒ V
3 vd ⊒ 𝑑
4 cxr ⊒ ℝ*
5 cmap ⊒ ↑m
6 1 cv ⊒ π‘₯
7 6 6 cxp ⊒ ( π‘₯ Γ— π‘₯ )
8 4 7 5 co ⊒ ( ℝ* ↑m ( π‘₯ Γ— π‘₯ ) )
9 vy ⊒ 𝑦
10 vz ⊒ 𝑧
11 9 cv ⊒ 𝑦
12 3 cv ⊒ 𝑑
13 10 cv ⊒ 𝑧
14 11 13 12 co ⊒ ( 𝑦 𝑑 𝑧 )
15 cc0 ⊒ 0
16 14 15 wceq ⊒ ( 𝑦 𝑑 𝑧 ) = 0
17 11 13 wceq ⊒ 𝑦 = 𝑧
18 16 17 wb ⊒ ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 )
19 vw ⊒ 𝑀
20 cle ⊒ ≀
21 19 cv ⊒ 𝑀
22 21 11 12 co ⊒ ( 𝑀 𝑑 𝑦 )
23 cxad ⊒ +𝑒
24 21 13 12 co ⊒ ( 𝑀 𝑑 𝑧 )
25 22 24 23 co ⊒ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) )
26 14 25 20 wbr ⊒ ( 𝑦 𝑑 𝑧 ) ≀ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) )
27 26 19 6 wral ⊒ βˆ€ 𝑀 ∈ π‘₯ ( 𝑦 𝑑 𝑧 ) ≀ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) )
28 18 27 wa ⊒ ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ βˆ€ 𝑀 ∈ π‘₯ ( 𝑦 𝑑 𝑧 ) ≀ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) ) )
29 28 10 6 wral ⊒ βˆ€ 𝑧 ∈ π‘₯ ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ βˆ€ 𝑀 ∈ π‘₯ ( 𝑦 𝑑 𝑧 ) ≀ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) ) )
30 29 9 6 wral ⊒ βˆ€ 𝑦 ∈ π‘₯ βˆ€ 𝑧 ∈ π‘₯ ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ βˆ€ 𝑀 ∈ π‘₯ ( 𝑦 𝑑 𝑧 ) ≀ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) ) )
31 30 3 8 crab ⊒ { 𝑑 ∈ ( ℝ* ↑m ( π‘₯ Γ— π‘₯ ) ) ∣ βˆ€ 𝑦 ∈ π‘₯ βˆ€ 𝑧 ∈ π‘₯ ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ βˆ€ 𝑀 ∈ π‘₯ ( 𝑦 𝑑 𝑧 ) ≀ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) ) ) }
32 1 2 31 cmpt ⊒ ( π‘₯ ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( π‘₯ Γ— π‘₯ ) ) ∣ βˆ€ 𝑦 ∈ π‘₯ βˆ€ 𝑧 ∈ π‘₯ ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ βˆ€ 𝑀 ∈ π‘₯ ( 𝑦 𝑑 𝑧 ) ≀ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) ) ) } )
33 0 32 wceq ⊒ ∞Met = ( π‘₯ ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( π‘₯ Γ— π‘₯ ) ) ∣ βˆ€ 𝑦 ∈ π‘₯ βˆ€ 𝑧 ∈ π‘₯ ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ βˆ€ 𝑀 ∈ π‘₯ ( 𝑦 𝑑 𝑧 ) ≀ ( ( 𝑀 𝑑 𝑦 ) +𝑒 ( 𝑀 𝑑 𝑧 ) ) ) } )