| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cxms |
⊢ ∞MetSp |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
ctps |
⊢ TopSp |
| 3 |
|
ctopn |
⊢ TopOpen |
| 4 |
1
|
cv |
⊢ 𝑓 |
| 5 |
4 3
|
cfv |
⊢ ( TopOpen ‘ 𝑓 ) |
| 6 |
|
cmopn |
⊢ MetOpen |
| 7 |
|
cds |
⊢ dist |
| 8 |
4 7
|
cfv |
⊢ ( dist ‘ 𝑓 ) |
| 9 |
|
cbs |
⊢ Base |
| 10 |
4 9
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 11 |
10 10
|
cxp |
⊢ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) |
| 12 |
8 11
|
cres |
⊢ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) |
| 13 |
12 6
|
cfv |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) |
| 14 |
5 13
|
wceq |
⊢ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) |
| 15 |
14 1 2
|
crab |
⊢ { 𝑓 ∈ TopSp ∣ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) } |
| 16 |
0 15
|
wceq |
⊢ ∞MetSp = { 𝑓 ∈ TopSp ∣ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) } |