Metamath Proof Explorer


Definition df-xms

Description: Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-xms ∞MetSp = { 𝑓 ∈ TopSp ∣ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxms ∞MetSp
1 vf 𝑓
2 ctps TopSp
3 ctopn TopOpen
4 1 cv 𝑓
5 4 3 cfv ( TopOpen ‘ 𝑓 )
6 cmopn MetOpen
7 cds dist
8 4 7 cfv ( dist ‘ 𝑓 )
9 cbs Base
10 4 9 cfv ( Base ‘ 𝑓 )
11 10 10 cxp ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) )
12 8 11 cres ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) )
13 12 6 cfv ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) )
14 5 13 wceq ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) )
15 14 1 2 crab { 𝑓 ∈ TopSp ∣ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) }
16 0 15 wceq ∞MetSp = { 𝑓 ∈ TopSp ∣ ( TopOpen ‘ 𝑓 ) = ( MetOpen ‘ ( ( dist ‘ 𝑓 ) ↾ ( ( Base ‘ 𝑓 ) × ( Base ‘ 𝑓 ) ) ) ) }