Metamath Proof Explorer


Definition df-xps

Description: Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Jim Kingdon, 25-Sep-2023)

Ref Expression
Assertion df-xps ×s = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Base ‘ 𝑠 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑟 ) Xs { ⟨ ∅ , 𝑟 ⟩ , ⟨ 1o , 𝑠 ⟩ } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxps ×s
1 vr 𝑟
2 cvv V
3 vs 𝑠
4 vx 𝑥
5 cbs Base
6 1 cv 𝑟
7 6 5 cfv ( Base ‘ 𝑟 )
8 vy 𝑦
9 3 cv 𝑠
10 9 5 cfv ( Base ‘ 𝑠 )
11 c0
12 4 cv 𝑥
13 11 12 cop ⟨ ∅ , 𝑥
14 c1o 1o
15 8 cv 𝑦
16 14 15 cop ⟨ 1o , 𝑦
17 13 16 cpr { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ }
18 4 8 7 10 17 cmpo ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Base ‘ 𝑠 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } )
19 18 ccnv ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Base ‘ 𝑠 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } )
20 cimas s
21 csca Scalar
22 6 21 cfv ( Scalar ‘ 𝑟 )
23 cprds Xs
24 11 6 cop ⟨ ∅ , 𝑟
25 14 9 cop ⟨ 1o , 𝑠
26 24 25 cpr { ⟨ ∅ , 𝑟 ⟩ , ⟨ 1o , 𝑠 ⟩ }
27 22 26 23 co ( ( Scalar ‘ 𝑟 ) Xs { ⟨ ∅ , 𝑟 ⟩ , ⟨ 1o , 𝑠 ⟩ } )
28 19 27 20 co ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Base ‘ 𝑠 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑟 ) Xs { ⟨ ∅ , 𝑟 ⟩ , ⟨ 1o , 𝑠 ⟩ } ) )
29 1 3 2 2 28 cmpo ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Base ‘ 𝑠 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑟 ) Xs { ⟨ ∅ , 𝑟 ⟩ , ⟨ 1o , 𝑠 ⟩ } ) ) )
30 0 29 wceq ×s = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Base ‘ 𝑠 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑟 ) Xs { ⟨ ∅ , 𝑟 ⟩ , ⟨ 1o , 𝑠 ⟩ } ) ) )