| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ho0f | ⊢  0hop  :  ℋ ⟶  ℋ | 
						
							| 2 |  | ffn | ⊢ (  0hop  :  ℋ ⟶  ℋ  →   0hop   Fn   ℋ ) | 
						
							| 3 | 1 2 | ax-mp | ⊢  0hop   Fn   ℋ | 
						
							| 4 |  | ho0val | ⊢ ( 𝑥  ∈   ℋ  →  (  0hop  ‘ 𝑥 )  =  0ℎ ) | 
						
							| 5 | 4 | rgen | ⊢ ∀ 𝑥  ∈   ℋ (  0hop  ‘ 𝑥 )  =  0ℎ | 
						
							| 6 |  | fconstfv | ⊢ (  0hop  :  ℋ ⟶ { 0ℎ }  ↔  (  0hop   Fn   ℋ  ∧  ∀ 𝑥  ∈   ℋ (  0hop  ‘ 𝑥 )  =  0ℎ ) ) | 
						
							| 7 | 3 5 6 | mpbir2an | ⊢  0hop  :  ℋ ⟶ { 0ℎ } | 
						
							| 8 |  | ax-hv0cl | ⊢ 0ℎ  ∈   ℋ | 
						
							| 9 | 8 | elexi | ⊢ 0ℎ  ∈  V | 
						
							| 10 | 9 | fconst2 | ⊢ (  0hop  :  ℋ ⟶ { 0ℎ }  ↔   0hop   =  (  ℋ  ×  { 0ℎ } ) ) | 
						
							| 11 | 7 10 | mpbi | ⊢  0hop   =  (  ℋ  ×  { 0ℎ } ) | 
						
							| 12 |  | df-ch0 | ⊢ 0ℋ  =  { 0ℎ } | 
						
							| 13 | 12 | xpeq2i | ⊢ (  ℋ  ×  0ℋ )  =  (  ℋ  ×  { 0ℎ } ) | 
						
							| 14 | 11 13 | eqtr4i | ⊢  0hop   =  (  ℋ  ×  0ℋ ) |