Step |
Hyp |
Ref |
Expression |
1 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
2 |
|
ffn |
⊢ ( 0hop : ℋ ⟶ ℋ → 0hop Fn ℋ ) |
3 |
1 2
|
ax-mp |
⊢ 0hop Fn ℋ |
4 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
5 |
4
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( 0hop ‘ 𝑥 ) = 0ℎ |
6 |
|
fconstfv |
⊢ ( 0hop : ℋ ⟶ { 0ℎ } ↔ ( 0hop Fn ℋ ∧ ∀ 𝑥 ∈ ℋ ( 0hop ‘ 𝑥 ) = 0ℎ ) ) |
7 |
3 5 6
|
mpbir2an |
⊢ 0hop : ℋ ⟶ { 0ℎ } |
8 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
9 |
8
|
elexi |
⊢ 0ℎ ∈ V |
10 |
9
|
fconst2 |
⊢ ( 0hop : ℋ ⟶ { 0ℎ } ↔ 0hop = ( ℋ × { 0ℎ } ) ) |
11 |
7 10
|
mpbi |
⊢ 0hop = ( ℋ × { 0ℎ } ) |
12 |
|
df-ch0 |
⊢ 0ℋ = { 0ℎ } |
13 |
12
|
xpeq2i |
⊢ ( ℋ × 0ℋ ) = ( ℋ × { 0ℎ } ) |
14 |
11 13
|
eqtr4i |
⊢ 0hop = ( ℋ × 0ℋ ) |