Metamath Proof Explorer


Theorem df0op2

Description: Alternate definition of Hilbert space zero operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion df0op2 0hop = ( ℋ × 0 )

Proof

Step Hyp Ref Expression
1 ho0f 0hop : ℋ ⟶ ℋ
2 ffn ( 0hop : ℋ ⟶ ℋ → 0hop Fn ℋ )
3 1 2 ax-mp 0hop Fn ℋ
4 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
5 4 rgen 𝑥 ∈ ℋ ( 0hop𝑥 ) = 0
6 fconstfv ( 0hop : ℋ ⟶ { 0 } ↔ ( 0hop Fn ℋ ∧ ∀ 𝑥 ∈ ℋ ( 0hop𝑥 ) = 0 ) )
7 3 5 6 mpbir2an 0hop : ℋ ⟶ { 0 }
8 ax-hv0cl 0 ∈ ℋ
9 8 elexi 0 ∈ V
10 9 fconst2 ( 0hop : ℋ ⟶ { 0 } ↔ 0hop = ( ℋ × { 0 } ) )
11 7 10 mpbi 0hop = ( ℋ × { 0 } )
12 df-ch0 0 = { 0 }
13 12 xpeq2i ( ℋ × 0 ) = ( ℋ × { 0 } )
14 11 13 eqtr4i 0hop = ( ℋ × 0 )