Metamath Proof Explorer


Theorem df1o2

Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002)

Ref Expression
Assertion df1o2 1o = { ∅ }

Proof

Step Hyp Ref Expression
1 df-1o 1o = suc ∅
2 suc0 suc ∅ = { ∅ }
3 1 2 eqtri 1o = { ∅ }