| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df2idl2rng.u | 
							⊢ 𝑈  =  ( 2Ideal ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							df2idl2rng.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							df2idl2rng.t | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( 𝐼  ∈  𝑈  ↔  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							biimpi | 
							⊢ ( 𝐼  ∈  𝑈  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							2idllidld | 
							⊢ ( 𝐼  ∈  𝑈  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 )  | 
						
						
							| 8 | 
							
								7
							 | 
							lidlsubg | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							sylan2 | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑈 )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ringrng | 
							⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Rng )  | 
						
						
							| 11 | 
							
								1 2 3
							 | 
							df2idl2rng | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝐼  ∈  𝑈  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( ( 𝑥  ·  𝑦 )  ∈  𝐼  ∧  ( 𝑦  ·  𝑥 )  ∈  𝐼 ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylan | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝐼  ∈  𝑈  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( ( 𝑥  ·  𝑦 )  ∈  𝐼  ∧  ( 𝑦  ·  𝑥 )  ∈  𝐼 ) ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							biadanid | 
							⊢ ( 𝑅  ∈  Ring  →  ( 𝐼  ∈  𝑈  ↔  ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( ( 𝑥  ·  𝑦 )  ∈  𝐼  ∧  ( 𝑦  ·  𝑥 )  ∈  𝐼 ) ) ) )  |