Step |
Hyp |
Ref |
Expression |
1 |
|
df2idl2rng.u |
⊢ 𝑈 = ( 2Ideal ‘ 𝑅 ) |
2 |
|
df2idl2rng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
df2idl2rng.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
1
|
eleq2i |
⊢ ( 𝐼 ∈ 𝑈 ↔ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
5 |
4
|
biimpi |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
6 |
5
|
2idllidld |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
7 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
8 |
7
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
9 |
6 8
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
10 |
|
ringrng |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) |
11 |
1 2 3
|
df2idl2rng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼 ∈ 𝑈 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼 ∈ 𝑈 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) |
13 |
9 12
|
biadanid |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) ) |