Metamath Proof Explorer


Theorem df2idl2

Description: Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025) (Proof shortened by AV, 18-Apr-2025)

Ref Expression
Hypotheses df2idl2rng.u 𝑈 = ( 2Ideal ‘ 𝑅 )
df2idl2rng.b 𝐵 = ( Base ‘ 𝑅 )
df2idl2rng.t · = ( .r𝑅 )
Assertion df2idl2 ( 𝑅 ∈ Ring → ( 𝐼𝑈 ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) )

Proof

Step Hyp Ref Expression
1 df2idl2rng.u 𝑈 = ( 2Ideal ‘ 𝑅 )
2 df2idl2rng.b 𝐵 = ( Base ‘ 𝑅 )
3 df2idl2rng.t · = ( .r𝑅 )
4 1 eleq2i ( 𝐼𝑈𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
5 4 biimpi ( 𝐼𝑈𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
6 5 2idllidld ( 𝐼𝑈𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
7 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
8 7 lidlsubg ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
9 6 8 sylan2 ( ( 𝑅 ∈ Ring ∧ 𝐼𝑈 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
10 ringrng ( 𝑅 ∈ Ring → 𝑅 ∈ Rng )
11 1 2 3 df2idl2rng ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼𝑈 ↔ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) )
12 10 11 sylan ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼𝑈 ↔ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) )
13 9 12 biadanid ( 𝑅 ∈ Ring → ( 𝐼𝑈 ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) )