Metamath Proof Explorer


Theorem df2idl2

Description: Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses df2idl2.u 𝑈 = ( 2Ideal ‘ 𝑅 )
df2idl2.b 𝐵 = ( Base ‘ 𝑅 )
df2idl2.t · = ( .r𝑅 )
Assertion df2idl2 ( 𝑅 ∈ Ring → ( 𝐼𝑈 ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) )

Proof

Step Hyp Ref Expression
1 df2idl2.u 𝑈 = ( 2Ideal ‘ 𝑅 )
2 df2idl2.b 𝐵 = ( Base ‘ 𝑅 )
3 df2idl2.t · = ( .r𝑅 )
4 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
5 eqid ( oppr𝑅 ) = ( oppr𝑅 )
6 eqid ( LIdeal ‘ ( oppr𝑅 ) ) = ( LIdeal ‘ ( oppr𝑅 ) )
7 4 5 6 1 2idlval 𝑈 = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr𝑅 ) ) )
8 7 elin2 ( 𝐼𝑈 ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ) )
9 8 a1i ( 𝑅 ∈ Ring → ( 𝐼𝑈 ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ) ) )
10 4 2 3 dflidl2 ( 𝑅 ∈ Ring → ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ) )
11 6 2 3 isridl ( 𝑅 ∈ Ring → ( 𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) )
12 10 11 anbi12d ( 𝑅 ∈ Ring → ( ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ) ↔ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) )
13 anandi ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ↔ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) )
14 r19.26-2 ( ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ↔ ( ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) )
15 14 bicomi ( ( ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ↔ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) )
16 15 a1i ( 𝑅 ∈ Ring → ( ( ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ↔ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) )
17 16 anbi2d ( 𝑅 ∈ Ring → ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) )
18 13 17 bitr3id ( 𝑅 ∈ Ring → ( ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) )
19 9 12 18 3bitrd ( 𝑅 ∈ Ring → ( 𝐼𝑈 ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) )