Step |
Hyp |
Ref |
Expression |
1 |
|
df2idl2.u |
⊢ 𝑈 = ( 2Ideal ‘ 𝑅 ) |
2 |
|
df2idl2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
df2idl2.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
7 |
4 5 6 1
|
2idlval |
⊢ 𝑈 = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
8 |
7
|
elin2 |
⊢ ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
9 |
8
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) ) |
10 |
4 2 3
|
dflidl2 |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ) ) |
11 |
6 2 3
|
isridl |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) |
12 |
10 11
|
anbi12d |
⊢ ( 𝑅 ∈ Ring → ( ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ↔ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) ) |
13 |
|
anandi |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ↔ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) |
14 |
|
r19.26-2 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) |
15 |
14
|
bicomi |
⊢ ( ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) |
16 |
15
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑅 ∈ Ring → ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) ) |
18 |
13 17
|
bitr3id |
⊢ ( 𝑅 ∈ Ring → ( ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) ∧ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) ) |
19 |
9 12 18
|
3bitrd |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) ) ) |