| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df2idl2rng.u | 
							⊢ 𝑈  =  ( 2Ideal ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							df2idl2rng.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							df2idl2rng.t | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								4 2 3
							 | 
							dflidl2rng | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  =  ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  | 
						
						
							| 7 | 
							
								6 2 3
							 | 
							isridlrng | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝐼  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑦  ·  𝑥 )  ∈  𝐼 ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							anbi12d | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐼  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) )  ↔  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑦  ·  𝑥 )  ∈  𝐼 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( oppr ‘ 𝑅 )  =  ( oppr ‘ 𝑅 )  | 
						
						
							| 10 | 
							
								4 9 6 1
							 | 
							2idlelb | 
							⊢ ( 𝐼  ∈  𝑈  ↔  ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝐼  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							r19.26-2 | 
							⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( ( 𝑥  ·  𝑦 )  ∈  𝐼  ∧  ( 𝑦  ·  𝑥 )  ∈  𝐼 )  ↔  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑥  ·  𝑦 )  ∈  𝐼  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( 𝑦  ·  𝑥 )  ∈  𝐼 ) )  | 
						
						
							| 12 | 
							
								8 10 11
							 | 
							3bitr4g | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 𝐼  ∈  𝑈  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐼 ( ( 𝑥  ·  𝑦 )  ∈  𝐼  ∧  ( 𝑦  ·  𝑥 )  ∈  𝐼 ) ) )  |