Metamath Proof Explorer


Theorem df2idl2rng

Description: Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)

Ref Expression
Hypotheses df2idl2rng.u 𝑈 = ( 2Ideal ‘ 𝑅 )
df2idl2rng.b 𝐵 = ( Base ‘ 𝑅 )
df2idl2rng.t · = ( .r𝑅 )
Assertion df2idl2rng ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼𝑈 ↔ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 df2idl2rng.u 𝑈 = ( 2Ideal ‘ 𝑅 )
2 df2idl2rng.b 𝐵 = ( Base ‘ 𝑅 )
3 df2idl2rng.t · = ( .r𝑅 )
4 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
5 4 2 3 dflidl2rng ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ↔ ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ) )
6 eqid ( LIdeal ‘ ( oppr𝑅 ) ) = ( LIdeal ‘ ( oppr𝑅 ) )
7 6 2 3 isridlrng ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ↔ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) )
8 5 7 anbi12d ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ) ↔ ( ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) )
9 eqid ( oppr𝑅 ) = ( oppr𝑅 )
10 4 9 6 1 2idlelb ( 𝐼𝑈 ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ) )
11 r19.26-2 ( ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ↔ ( ∀ 𝑥𝐵𝑦𝐼 ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ∀ 𝑥𝐵𝑦𝐼 ( 𝑦 · 𝑥 ) ∈ 𝐼 ) )
12 8 10 11 3bitr4g ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐼𝑈 ↔ ∀ 𝑥𝐵𝑦𝐼 ( ( 𝑥 · 𝑦 ) ∈ 𝐼 ∧ ( 𝑦 · 𝑥 ) ∈ 𝐼 ) ) )