Metamath Proof Explorer


Theorem df2o2

Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004)

Ref Expression
Assertion df2o2 2o = { ∅ , { ∅ } }

Proof

Step Hyp Ref Expression
1 df2o3 2o = { ∅ , 1o }
2 df1o2 1o = { ∅ }
3 2 preq2i { ∅ , 1o } = { ∅ , { ∅ } }
4 1 3 eqtri 2o = { ∅ , { ∅ } }