Metamath Proof Explorer


Theorem df2o3

Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion df2o3 2o = { ∅ , 1o }

Proof

Step Hyp Ref Expression
1 df-2o 2o = suc 1o
2 df-suc suc 1o = ( 1o ∪ { 1o } )
3 df1o2 1o = { ∅ }
4 3 uneq1i ( 1o ∪ { 1o } ) = ( { ∅ } ∪ { 1o } )
5 df-pr { ∅ , 1o } = ( { ∅ } ∪ { 1o } )
6 4 5 eqtr4i ( 1o ∪ { 1o } ) = { ∅ , 1o }
7 1 2 6 3eqtri 2o = { ∅ , 1o }