Step |
Hyp |
Ref |
Expression |
1 |
|
iman |
⊢ ( ( 𝜑 → ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
2 |
|
imnan |
⊢ ( ( 𝜓 → ¬ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) |
3 |
2
|
biimpi |
⊢ ( ( 𝜓 → ¬ 𝜒 ) → ¬ ( 𝜓 ∧ 𝜒 ) ) |
4 |
3 3
|
jca |
⊢ ( ( 𝜓 → ¬ 𝜒 ) → ( ¬ ( 𝜓 ∧ 𝜒 ) ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
5 |
2
|
biimpri |
⊢ ( ¬ ( 𝜓 ∧ 𝜒 ) → ( 𝜓 → ¬ 𝜒 ) ) |
6 |
5
|
adantl |
⊢ ( ( ¬ ( 𝜓 ∧ 𝜒 ) ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) → ( 𝜓 → ¬ 𝜒 ) ) |
7 |
4 6
|
impbii |
⊢ ( ( 𝜓 → ¬ 𝜒 ) ↔ ( ¬ ( 𝜓 ∧ 𝜒 ) ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
8 |
|
df-nan |
⊢ ( ( 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) |
9 |
8 8
|
anbi12i |
⊢ ( ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ↔ ( ¬ ( 𝜓 ∧ 𝜒 ) ∧ ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
10 |
7 9
|
bitr4i |
⊢ ( ( 𝜓 → ¬ 𝜒 ) ↔ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) |
11 |
10
|
imbi2i |
⊢ ( ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ↔ ( 𝜑 → ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
12 |
|
df-nan |
⊢ ( ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ↔ ¬ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) |
13 |
12
|
anbi2i |
⊢ ( ( 𝜑 ∧ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ( 𝜑 ∧ ¬ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
14 |
13
|
notbii |
⊢ ( ¬ ( 𝜑 ∧ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ¬ ( 𝜑 ∧ ¬ ( ( 𝜓 ⊼ 𝜒 ) ∧ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
15 |
1 11 14
|
3bitr4i |
⊢ ( ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ↔ ¬ ( 𝜑 ∧ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
16 |
|
df-3nand |
⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) |
17 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ↔ ¬ ( 𝜑 ∧ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |
18 |
15 16 17
|
3bitr4i |
⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( 𝜑 ⊼ ( ( 𝜓 ⊼ 𝜒 ) ⊼ ( 𝜓 ⊼ 𝜒 ) ) ) ) |