Metamath Proof Explorer


Theorem df3nandALT2

Description: The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion df3nandALT2 ( ( 𝜑𝜓𝜒 ) ↔ ¬ ( 𝜑𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 df-3nand ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) )
2 imnan ( ( 𝜓 → ¬ 𝜒 ) ↔ ¬ ( 𝜓𝜒 ) )
3 2 imbi2i ( ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ↔ ( 𝜑 → ¬ ( 𝜓𝜒 ) ) )
4 imnan ( ( 𝜑 → ¬ ( 𝜓𝜒 ) ) ↔ ¬ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
5 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
6 4 5 xchbinxr ( ( 𝜑 → ¬ ( 𝜓𝜒 ) ) ↔ ¬ ( 𝜑𝜓𝜒 ) )
7 1 3 6 3bitri ( ( 𝜑𝜓𝜒 ) ↔ ¬ ( 𝜑𝜓𝜒 ) )