Description: The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df3nandALT2 | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3nand | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) | |
| 2 | imnan | ⊢ ( ( 𝜓 → ¬ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) | |
| 3 | 2 | imbi2i | ⊢ ( ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ↔ ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
| 4 | imnan | ⊢ ( ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) ↔ ¬ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 5 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 6 | 4 5 | xchbinxr | ⊢ ( ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) ↔ ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
| 7 | 1 3 6 | 3bitri | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |