Description: The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | df3nandALT2 | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3nand | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ) | |
2 | imnan | ⊢ ( ( 𝜓 → ¬ 𝜒 ) ↔ ¬ ( 𝜓 ∧ 𝜒 ) ) | |
3 | 2 | imbi2i | ⊢ ( ( 𝜑 → ( 𝜓 → ¬ 𝜒 ) ) ↔ ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) ) |
4 | imnan | ⊢ ( ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) ↔ ¬ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
5 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
6 | 4 5 | xchbinxr | ⊢ ( ( 𝜑 → ¬ ( 𝜓 ∧ 𝜒 ) ) ↔ ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
7 | 1 3 6 | 3bitri | ⊢ ( ( 𝜑 ⊼ 𝜓 ⊼ 𝜒 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |