| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfac7 | ⊢ ( CHOICE  ↔  ∀ 𝑥 ∃ 𝑦 ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑧 ∃! 𝑣  ∈  𝑧 ∃ 𝑢  ∈  𝑦 ( 𝑧  ∈  𝑢  ∧  𝑣  ∈  𝑢 ) ) | 
						
							| 2 |  | aceq1 | ⊢ ( ∃ 𝑦 ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑧 ∃! 𝑣  ∈  𝑧 ∃ 𝑢  ∈  𝑦 ( 𝑧  ∈  𝑢  ∧  𝑣  ∈  𝑢 )  ↔  ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑧 ∃! 𝑣  ∈  𝑧 ∃ 𝑢  ∈  𝑦 ( 𝑧  ∈  𝑢  ∧  𝑣  ∈  𝑢 )  ↔  ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) | 
						
							| 4 | 1 3 | bitri | ⊢ ( CHOICE  ↔  ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  →  ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑥 )  ∧  ( 𝑧  ∈  𝑥  ∧  𝑥  ∈  𝑦 ) )  ↔  𝑧  =  𝑥 ) ) ) |