Description: Axiom of Choice equivalent: every set is equinumerous to an ordinal. (Contributed by Stefan O'Rear, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac10c | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac10 | ⊢ ( CHOICE ↔ dom card = V ) | |
| 2 | eqv | ⊢ ( dom card = V ↔ ∀ 𝑥 𝑥 ∈ dom card ) | |
| 3 | isnum2 | ⊢ ( 𝑥 ∈ dom card ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 𝑥 ∈ dom card ↔ ∀ 𝑥 ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 ) |
| 5 | 1 2 4 | 3bitri | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 ) |