Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dfac12a | ⊢ ( CHOICE ↔ ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv | ⊢ dom card ⊆ V | |
2 | eqss | ⊢ ( dom card = V ↔ ( dom card ⊆ V ∧ V ⊆ dom card ) ) | |
3 | 1 2 | mpbiran | ⊢ ( dom card = V ↔ V ⊆ dom card ) |
4 | dfac10 | ⊢ ( CHOICE ↔ dom card = V ) | |
5 | unir1 | ⊢ ∪ ( 𝑅1 “ On ) = V | |
6 | 5 | sseq1i | ⊢ ( ∪ ( 𝑅1 “ On ) ⊆ dom card ↔ V ⊆ dom card ) |
7 | 3 4 6 | 3bitr4i | ⊢ ( CHOICE ↔ ∪ ( 𝑅1 “ On ) ⊆ dom card ) |
8 | dfac12r | ⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∪ ( 𝑅1 “ On ) ⊆ dom card ) | |
9 | 7 8 | bitr4i | ⊢ ( CHOICE ↔ ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ) |