Step |
Hyp |
Ref |
Expression |
1 |
|
dfac12.1 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
2 |
|
dfac12.3 |
⊢ ( 𝜑 → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) |
3 |
|
dfac12.4 |
⊢ 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) |
4 |
|
dfac12.5 |
⊢ ( 𝜑 → 𝐶 ∈ On ) |
5 |
|
dfac12.h |
⊢ 𝐻 = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) |
6 |
3
|
tfr2 |
⊢ ( 𝐶 ∈ On → ( 𝐺 ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) ) |
8 |
3
|
tfr1 |
⊢ 𝐺 Fn On |
9 |
|
fnfun |
⊢ ( 𝐺 Fn On → Fun 𝐺 ) |
10 |
8 9
|
ax-mp |
⊢ Fun 𝐺 |
11 |
|
resfunexg |
⊢ ( ( Fun 𝐺 ∧ 𝐶 ∈ On ) → ( 𝐺 ↾ 𝐶 ) ∈ V ) |
12 |
10 4 11
|
sylancr |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝐶 ) ∈ V ) |
13 |
|
dmeq |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → dom 𝑥 = dom ( 𝐺 ↾ 𝐶 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝑅1 ‘ dom 𝑥 ) = ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ) |
15 |
13
|
unieqd |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ∪ dom 𝑥 = ∪ dom ( 𝐺 ↾ 𝐶 ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( dom 𝑥 = ∪ dom 𝑥 ↔ dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) |
17 |
|
rneq |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ran 𝑥 = ran ( 𝐺 ↾ 𝐶 ) ) |
18 |
|
df-ima |
⊢ ( 𝐺 “ 𝐶 ) = ran ( 𝐺 ↾ 𝐶 ) |
19 |
17 18
|
eqtr4di |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ran 𝑥 = ( 𝐺 “ 𝐶 ) ) |
20 |
19
|
unieqd |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ∪ ran 𝑥 = ∪ ( 𝐺 “ 𝐶 ) ) |
21 |
20
|
rneqd |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ran ∪ ran 𝑥 = ran ∪ ( 𝐺 “ 𝐶 ) ) |
22 |
21
|
unieqd |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ∪ ran ∪ ran 𝑥 = ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
23 |
|
suceq |
⊢ ( ∪ ran ∪ ran 𝑥 = ∪ ran ∪ ( 𝐺 “ 𝐶 ) → suc ∪ ran ∪ ran 𝑥 = suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
24 |
22 23
|
syl |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → suc ∪ ran ∪ ran 𝑥 = suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ) |
25 |
24
|
oveq1d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) = ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) ) |
26 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) = ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ) |
27 |
26
|
fveq1d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) |
28 |
25 27
|
oveq12d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ) |
29 |
|
id |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → 𝑥 = ( 𝐺 ↾ 𝐶 ) ) |
30 |
29 15
|
fveq12d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) |
31 |
30
|
rneqd |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ran ( 𝑥 ‘ ∪ dom 𝑥 ) = ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) |
32 |
|
oieq2 |
⊢ ( ran ( 𝑥 ‘ ∪ dom 𝑥 ) = ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) → OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ) |
33 |
31 32
|
syl |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ) |
34 |
33
|
cnveqd |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ) |
35 |
34 30
|
coeq12d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ) |
36 |
35
|
imaeq1d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) = ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) |
37 |
36
|
fveq2d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) = ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) |
38 |
16 28 37
|
ifbieq12d |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) = if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) |
39 |
14 38
|
mpteq12dv |
⊢ ( 𝑥 = ( 𝐺 ↾ 𝐶 ) → ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ) |
40 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) |
41 |
|
fvex |
⊢ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ∈ V |
42 |
41
|
mptex |
⊢ ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ∈ V |
43 |
39 40 42
|
fvmpt |
⊢ ( ( 𝐺 ↾ 𝐶 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ) |
44 |
12 43
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ) |
45 |
|
onss |
⊢ ( 𝐶 ∈ On → 𝐶 ⊆ On ) |
46 |
4 45
|
syl |
⊢ ( 𝜑 → 𝐶 ⊆ On ) |
47 |
|
fnssres |
⊢ ( ( 𝐺 Fn On ∧ 𝐶 ⊆ On ) → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) |
48 |
8 46 47
|
sylancr |
⊢ ( 𝜑 → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) |
49 |
48
|
fndmd |
⊢ ( 𝜑 → dom ( 𝐺 ↾ 𝐶 ) = 𝐶 ) |
50 |
49
|
fveq2d |
⊢ ( 𝜑 → ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) = ( 𝑅1 ‘ 𝐶 ) ) |
51 |
50
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) ) |
52 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → dom ( 𝐺 ↾ 𝐶 ) = 𝐶 ) |
53 |
52
|
unieqd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → ∪ dom ( 𝐺 ↾ 𝐶 ) = ∪ 𝐶 ) |
54 |
52 53
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) ↔ 𝐶 = ∪ 𝐶 ) ) |
55 |
54
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) |
56 |
|
rankr1ai |
⊢ ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ 𝐶 ) |
57 |
56
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ 𝐶 ) |
58 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → 𝐶 = ∪ 𝐶 ) |
59 |
57 58
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ) |
60 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
61 |
|
ordsucuniel |
⊢ ( Ord 𝐶 → ( ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) ) |
62 |
4 60 61
|
3syl |
⊢ ( 𝜑 → ( ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) ) |
63 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( rank ‘ 𝑦 ) ∈ ∪ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) ) |
64 |
59 63
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) |
65 |
64
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ) |
66 |
65
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) |
67 |
66
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ 𝐶 = ∪ 𝐶 ) → ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ) |
68 |
67
|
ifeq1da |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) |
69 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ dom ( 𝐺 ↾ 𝐶 ) = ∪ 𝐶 ) |
70 |
69
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) = ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ) |
71 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐶 ∈ On ) |
72 |
|
uniexg |
⊢ ( 𝐶 ∈ On → ∪ 𝐶 ∈ V ) |
73 |
|
sucidg |
⊢ ( ∪ 𝐶 ∈ V → ∪ 𝐶 ∈ suc ∪ 𝐶 ) |
74 |
71 72 73
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ suc ∪ 𝐶 ) |
75 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → 𝐶 ∈ On ) |
76 |
|
orduniorsuc |
⊢ ( Ord 𝐶 → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) |
77 |
75 60 76
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) |
78 |
77
|
orcanai |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐶 = suc ∪ 𝐶 ) |
79 |
74 78
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ 𝐶 ) |
80 |
79
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) = ( 𝐺 ‘ ∪ 𝐶 ) ) |
81 |
70 80
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) = ( 𝐺 ‘ ∪ 𝐶 ) ) |
82 |
81
|
rneqd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) = ran ( 𝐺 ‘ ∪ 𝐶 ) ) |
83 |
|
oieq2 |
⊢ ( ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) = ran ( 𝐺 ‘ ∪ 𝐶 ) → OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
84 |
82 83
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
85 |
84
|
cnveqd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
86 |
85 81
|
coeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝐶 ) ) ∘ ( 𝐺 ‘ ∪ 𝐶 ) ) ) |
87 |
86 5
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) = 𝐻 ) |
88 |
87
|
imaeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) = ( 𝐻 “ 𝑦 ) ) |
89 |
88
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) = ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) |
90 |
89
|
ifeq2da |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) |
91 |
55 68 90
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ) → if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) |
92 |
91
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) ) |
93 |
51 92
|
eqtrd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺 ↾ 𝐶 ) ) ↦ if ( dom ( 𝐺 ↾ 𝐶 ) = ∪ dom ( 𝐺 ↾ 𝐶 ) , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺 ↾ 𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) ∘ ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ dom ( 𝐺 ↾ 𝐶 ) ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) ) |
94 |
7 44 93
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) = ( 𝑦 ∈ ( 𝑅1 ‘ 𝐶 ) ↦ if ( 𝐶 = ∪ 𝐶 , ( ( suc ∪ ran ∪ ( 𝐺 “ 𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻 “ 𝑦 ) ) ) ) ) |