Metamath Proof Explorer


Theorem dfac12lem1

Description: Lemma for dfac12 . (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Hypotheses dfac12.1 ( 𝜑𝐴 ∈ On )
dfac12.3 ( 𝜑𝐹 : 𝒫 ( har ‘ ( 𝑅1𝐴 ) ) –1-1→ On )
dfac12.4 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) )
dfac12.5 ( 𝜑𝐶 ∈ On )
dfac12.h 𝐻 = ( OrdIso ( E , ran ( 𝐺 𝐶 ) ) ∘ ( 𝐺 𝐶 ) )
Assertion dfac12lem1 ( 𝜑 → ( 𝐺𝐶 ) = ( 𝑦 ∈ ( 𝑅1𝐶 ) ↦ if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dfac12.1 ( 𝜑𝐴 ∈ On )
2 dfac12.3 ( 𝜑𝐹 : 𝒫 ( har ‘ ( 𝑅1𝐴 ) ) –1-1→ On )
3 dfac12.4 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) )
4 dfac12.5 ( 𝜑𝐶 ∈ On )
5 dfac12.h 𝐻 = ( OrdIso ( E , ran ( 𝐺 𝐶 ) ) ∘ ( 𝐺 𝐶 ) )
6 3 tfr2 ( 𝐶 ∈ On → ( 𝐺𝐶 ) = ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺𝐶 ) ) )
7 4 6 syl ( 𝜑 → ( 𝐺𝐶 ) = ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺𝐶 ) ) )
8 3 tfr1 𝐺 Fn On
9 fnfun ( 𝐺 Fn On → Fun 𝐺 )
10 8 9 ax-mp Fun 𝐺
11 resfunexg ( ( Fun 𝐺𝐶 ∈ On ) → ( 𝐺𝐶 ) ∈ V )
12 10 4 11 sylancr ( 𝜑 → ( 𝐺𝐶 ) ∈ V )
13 dmeq ( 𝑥 = ( 𝐺𝐶 ) → dom 𝑥 = dom ( 𝐺𝐶 ) )
14 13 fveq2d ( 𝑥 = ( 𝐺𝐶 ) → ( 𝑅1 ‘ dom 𝑥 ) = ( 𝑅1 ‘ dom ( 𝐺𝐶 ) ) )
15 13 unieqd ( 𝑥 = ( 𝐺𝐶 ) → dom 𝑥 = dom ( 𝐺𝐶 ) )
16 13 15 eqeq12d ( 𝑥 = ( 𝐺𝐶 ) → ( dom 𝑥 = dom 𝑥 ↔ dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) ) )
17 rneq ( 𝑥 = ( 𝐺𝐶 ) → ran 𝑥 = ran ( 𝐺𝐶 ) )
18 df-ima ( 𝐺𝐶 ) = ran ( 𝐺𝐶 )
19 17 18 eqtr4di ( 𝑥 = ( 𝐺𝐶 ) → ran 𝑥 = ( 𝐺𝐶 ) )
20 19 unieqd ( 𝑥 = ( 𝐺𝐶 ) → ran 𝑥 = ( 𝐺𝐶 ) )
21 20 rneqd ( 𝑥 = ( 𝐺𝐶 ) → ran ran 𝑥 = ran ( 𝐺𝐶 ) )
22 21 unieqd ( 𝑥 = ( 𝐺𝐶 ) → ran ran 𝑥 = ran ( 𝐺𝐶 ) )
23 suceq ( ran ran 𝑥 = ran ( 𝐺𝐶 ) → suc ran ran 𝑥 = suc ran ( 𝐺𝐶 ) )
24 22 23 syl ( 𝑥 = ( 𝐺𝐶 ) → suc ran ran 𝑥 = suc ran ( 𝐺𝐶 ) )
25 24 oveq1d ( 𝑥 = ( 𝐺𝐶 ) → ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) = ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) )
26 fveq1 ( 𝑥 = ( 𝐺𝐶 ) → ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) = ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) )
27 26 fveq1d ( 𝑥 = ( 𝐺𝐶 ) → ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) )
28 25 27 oveq12d ( 𝑥 = ( 𝐺𝐶 ) → ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) )
29 id ( 𝑥 = ( 𝐺𝐶 ) → 𝑥 = ( 𝐺𝐶 ) )
30 29 15 fveq12d ( 𝑥 = ( 𝐺𝐶 ) → ( 𝑥 dom 𝑥 ) = ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) )
31 30 rneqd ( 𝑥 = ( 𝐺𝐶 ) → ran ( 𝑥 dom 𝑥 ) = ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) )
32 oieq2 ( ran ( 𝑥 dom 𝑥 ) = ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) → OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) = OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) )
33 31 32 syl ( 𝑥 = ( 𝐺𝐶 ) → OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) = OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) )
34 33 cnveqd ( 𝑥 = ( 𝐺𝐶 ) → OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) = OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) )
35 34 30 coeq12d ( 𝑥 = ( 𝐺𝐶 ) → ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) = ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) )
36 35 imaeq1d ( 𝑥 = ( 𝐺𝐶 ) → ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) = ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) )
37 36 fveq2d ( 𝑥 = ( 𝐺𝐶 ) → ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) = ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) )
38 16 28 37 ifbieq12d ( 𝑥 = ( 𝐺𝐶 ) → if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) = if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) )
39 14 38 mpteq12dv ( 𝑥 = ( 𝐺𝐶 ) → ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺𝐶 ) ) ↦ if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) ) )
40 eqid ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) ) )
41 fvex ( 𝑅1 ‘ dom ( 𝐺𝐶 ) ) ∈ V
42 41 mptex ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺𝐶 ) ) ↦ if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) ) ∈ V
43 39 40 42 fvmpt ( ( 𝐺𝐶 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺𝐶 ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺𝐶 ) ) ↦ if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) ) )
44 12 43 syl ( 𝜑 → ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = dom 𝑥 , ( ( suc ran ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( 𝑥 dom 𝑥 ) ) ∘ ( 𝑥 dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ‘ ( 𝐺𝐶 ) ) = ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺𝐶 ) ) ↦ if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) ) )
45 onss ( 𝐶 ∈ On → 𝐶 ⊆ On )
46 4 45 syl ( 𝜑𝐶 ⊆ On )
47 fnssres ( ( 𝐺 Fn On ∧ 𝐶 ⊆ On ) → ( 𝐺𝐶 ) Fn 𝐶 )
48 8 46 47 sylancr ( 𝜑 → ( 𝐺𝐶 ) Fn 𝐶 )
49 48 fndmd ( 𝜑 → dom ( 𝐺𝐶 ) = 𝐶 )
50 49 fveq2d ( 𝜑 → ( 𝑅1 ‘ dom ( 𝐺𝐶 ) ) = ( 𝑅1𝐶 ) )
51 50 mpteq1d ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺𝐶 ) ) ↦ if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1𝐶 ) ↦ if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) ) )
52 49 adantr ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) → dom ( 𝐺𝐶 ) = 𝐶 )
53 52 unieqd ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) → dom ( 𝐺𝐶 ) = 𝐶 )
54 52 53 eqeq12d ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) → ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) ↔ 𝐶 = 𝐶 ) )
55 54 ifbid ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) → if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) )
56 rankr1ai ( 𝑦 ∈ ( 𝑅1𝐶 ) → ( rank ‘ 𝑦 ) ∈ 𝐶 )
57 56 ad2antlr ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ 𝐶 = 𝐶 ) → ( rank ‘ 𝑦 ) ∈ 𝐶 )
58 simpr ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ 𝐶 = 𝐶 ) → 𝐶 = 𝐶 )
59 57 58 eleqtrd ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ 𝐶 = 𝐶 ) → ( rank ‘ 𝑦 ) ∈ 𝐶 )
60 eloni ( 𝐶 ∈ On → Ord 𝐶 )
61 ordsucuniel ( Ord 𝐶 → ( ( rank ‘ 𝑦 ) ∈ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) )
62 4 60 61 3syl ( 𝜑 → ( ( rank ‘ 𝑦 ) ∈ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) )
63 62 ad2antrr ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ 𝐶 = 𝐶 ) → ( ( rank ‘ 𝑦 ) ∈ 𝐶 ↔ suc ( rank ‘ 𝑦 ) ∈ 𝐶 ) )
64 59 63 mpbid ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ 𝐶 = 𝐶 ) → suc ( rank ‘ 𝑦 ) ∈ 𝐶 )
65 64 fvresd ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ 𝐶 = 𝐶 ) → ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) )
66 65 fveq1d ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ 𝐶 = 𝐶 ) → ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) )
67 66 oveq2d ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ 𝐶 = 𝐶 ) → ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) )
68 67 ifeq1da ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) → if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) )
69 53 adantr ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → dom ( 𝐺𝐶 ) = 𝐶 )
70 69 fveq2d ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) = ( ( 𝐺𝐶 ) ‘ 𝐶 ) )
71 4 ad2antrr ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → 𝐶 ∈ On )
72 uniexg ( 𝐶 ∈ On → 𝐶 ∈ V )
73 sucidg ( 𝐶 ∈ V → 𝐶 ∈ suc 𝐶 )
74 71 72 73 3syl ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → 𝐶 ∈ suc 𝐶 )
75 4 adantr ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) → 𝐶 ∈ On )
76 orduniorsuc ( Ord 𝐶 → ( 𝐶 = 𝐶𝐶 = suc 𝐶 ) )
77 75 60 76 3syl ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) → ( 𝐶 = 𝐶𝐶 = suc 𝐶 ) )
78 77 orcanai ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → 𝐶 = suc 𝐶 )
79 74 78 eleqtrrd ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → 𝐶𝐶 )
80 79 fvresd ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → ( ( 𝐺𝐶 ) ‘ 𝐶 ) = ( 𝐺 𝐶 ) )
81 70 80 eqtrd ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) = ( 𝐺 𝐶 ) )
82 81 rneqd ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) = ran ( 𝐺 𝐶 ) )
83 oieq2 ( ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) = ran ( 𝐺 𝐶 ) → OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) = OrdIso ( E , ran ( 𝐺 𝐶 ) ) )
84 82 83 syl ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) = OrdIso ( E , ran ( 𝐺 𝐶 ) ) )
85 84 cnveqd ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) = OrdIso ( E , ran ( 𝐺 𝐶 ) ) )
86 85 81 coeq12d ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) = ( OrdIso ( E , ran ( 𝐺 𝐶 ) ) ∘ ( 𝐺 𝐶 ) ) )
87 86 5 eqtr4di ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) = 𝐻 )
88 87 imaeq1d ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) = ( 𝐻𝑦 ) )
89 88 fveq2d ( ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) ∧ ¬ 𝐶 = 𝐶 ) → ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) = ( 𝐹 ‘ ( 𝐻𝑦 ) ) )
90 89 ifeq2da ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) → if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻𝑦 ) ) ) )
91 55 68 90 3eqtrd ( ( 𝜑𝑦 ∈ ( 𝑅1𝐶 ) ) → if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) = if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻𝑦 ) ) ) )
92 91 mpteq2dva ( 𝜑 → ( 𝑦 ∈ ( 𝑅1𝐶 ) ↦ if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1𝐶 ) ↦ if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻𝑦 ) ) ) ) )
93 51 92 eqtrd ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 ‘ dom ( 𝐺𝐶 ) ) ↦ if ( dom ( 𝐺𝐶 ) = dom ( 𝐺𝐶 ) , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( ( 𝐺𝐶 ) ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( OrdIso ( E , ran ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) ∘ ( ( 𝐺𝐶 ) ‘ dom ( 𝐺𝐶 ) ) ) “ 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 𝑅1𝐶 ) ↦ if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻𝑦 ) ) ) ) )
94 7 44 93 3eqtrd ( 𝜑 → ( 𝐺𝐶 ) = ( 𝑦 ∈ ( 𝑅1𝐶 ) ↦ if ( 𝐶 = 𝐶 , ( ( suc ran ( 𝐺𝐶 ) ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝐺 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( 𝐻𝑦 ) ) ) ) )