Step |
Hyp |
Ref |
Expression |
1 |
|
dfac12.1 |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
2 |
|
dfac12.3 |
⊢ ( 𝜑 → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) |
3 |
|
dfac12.4 |
⊢ 𝐺 = recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝐹 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) |
4 |
|
fvex |
⊢ ( 𝐺 ‘ 𝐴 ) ∈ V |
5 |
4
|
rnex |
⊢ ran ( 𝐺 ‘ 𝐴 ) ∈ V |
6 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
7 |
|
sseq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ⊆ 𝐴 ↔ 𝑛 ⊆ 𝐴 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑛 ) ) |
9 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑛 ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
10 |
8 9
|
syl |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
11 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑅1 ‘ 𝑚 ) = ( 𝑅1 ‘ 𝑛 ) ) |
12 |
|
f1eq2 |
⊢ ( ( 𝑅1 ‘ 𝑚 ) = ( 𝑅1 ‘ 𝑛 ) → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
14 |
10 13
|
bitrd |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
15 |
7 14
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ↔ ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ↔ ( 𝜑 → ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) ) ) |
17 |
|
sseq1 |
⊢ ( 𝑚 = 𝐴 → ( 𝑚 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑚 = 𝐴 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐴 ) ) |
19 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝐴 ) → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
20 |
18 19
|
syl |
⊢ ( 𝑚 = 𝐴 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
21 |
|
fveq2 |
⊢ ( 𝑚 = 𝐴 → ( 𝑅1 ‘ 𝑚 ) = ( 𝑅1 ‘ 𝐴 ) ) |
22 |
|
f1eq2 |
⊢ ( ( 𝑅1 ‘ 𝑚 ) = ( 𝑅1 ‘ 𝐴 ) → ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) |
23 |
21 22
|
syl |
⊢ ( 𝑚 = 𝐴 → ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) |
24 |
20 23
|
bitrd |
⊢ ( 𝑚 = 𝐴 → ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ↔ ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) |
25 |
17 24
|
imbi12d |
⊢ ( 𝑚 = 𝐴 → ( ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ↔ ( 𝐴 ⊆ 𝐴 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) ) |
26 |
25
|
imbi2d |
⊢ ( 𝑚 = 𝐴 → ( ( 𝜑 → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) ) ) |
27 |
|
r19.21v |
⊢ ( ∀ 𝑛 ∈ 𝑚 ( 𝜑 → ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) ↔ ( 𝜑 → ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) ) |
28 |
|
eloni |
⊢ ( 𝑚 ∈ On → Ord 𝑚 ) |
29 |
28
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) → Ord 𝑚 ) |
30 |
|
ordelss |
⊢ ( ( Ord 𝑚 ∧ 𝑛 ∈ 𝑚 ) → 𝑛 ⊆ 𝑚 ) |
31 |
29 30
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ 𝑛 ∈ 𝑚 ) → 𝑛 ⊆ 𝑚 ) |
32 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ 𝑛 ∈ 𝑚 ) → 𝑚 ⊆ 𝐴 ) |
33 |
31 32
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ 𝑛 ∈ 𝑚 ) → 𝑛 ⊆ 𝐴 ) |
34 |
|
pm5.5 |
⊢ ( 𝑛 ⊆ 𝐴 → ( ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
35 |
33 34
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ 𝑛 ∈ 𝑚 ) → ( ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ↔ ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
36 |
35
|
ralbidva |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ↔ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
37 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → 𝐴 ∈ On ) |
38 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → 𝐹 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On ) |
39 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → 𝑚 ∈ On ) |
40 |
|
eqid |
⊢ ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝑚 ) ) ∘ ( 𝐺 ‘ ∪ 𝑚 ) ) = ( ◡ OrdIso ( E , ran ( 𝐺 ‘ ∪ 𝑚 ) ) ∘ ( 𝐺 ‘ ∪ 𝑚 ) ) |
41 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → 𝑚 ⊆ 𝐴 ) |
42 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) |
43 |
|
fveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑧 ) ) |
44 |
|
f1eq1 |
⊢ ( ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑧 ) → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
45 |
43 44
|
syl |
⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) |
46 |
|
fveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝑅1 ‘ 𝑛 ) = ( 𝑅1 ‘ 𝑧 ) ) |
47 |
|
f1eq2 |
⊢ ( ( 𝑅1 ‘ 𝑛 ) = ( 𝑅1 ‘ 𝑧 ) → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) |
48 |
46 47
|
syl |
⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) |
49 |
45 48
|
bitrd |
⊢ ( 𝑛 = 𝑧 → ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) ) |
50 |
49
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ↔ ∀ 𝑧 ∈ 𝑚 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) |
51 |
42 50
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ∀ 𝑧 ∈ 𝑚 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) |
52 |
37 38 3 39 40 41 51
|
dfac12lem2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) ∧ ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) |
53 |
52
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) → ( ∀ 𝑛 ∈ 𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
54 |
36 53
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ On ∧ 𝑚 ⊆ 𝐴 ) ) → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) |
55 |
54
|
expr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ On ) → ( 𝑚 ⊆ 𝐴 → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) |
56 |
55
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ On ) → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) |
57 |
56
|
expcom |
⊢ ( 𝑚 ∈ On → ( 𝜑 → ( ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) ) |
58 |
57
|
a2d |
⊢ ( 𝑚 ∈ On → ( ( 𝜑 → ∀ 𝑛 ∈ 𝑚 ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) → ( 𝜑 → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) ) |
59 |
27 58
|
syl5bi |
⊢ ( 𝑚 ∈ On → ( ∀ 𝑛 ∈ 𝑚 ( 𝜑 → ( 𝑛 ⊆ 𝐴 → ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) → ( 𝜑 → ( 𝑚 ⊆ 𝐴 → ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) ) |
60 |
16 26 59
|
tfis3 |
⊢ ( 𝐴 ∈ On → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) ) |
61 |
1 60
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) |
62 |
6 61
|
mpi |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) |
63 |
|
f1f |
⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) ⟶ On ) |
64 |
|
frn |
⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) ⟶ On → ran ( 𝐺 ‘ 𝐴 ) ⊆ On ) |
65 |
62 63 64
|
3syl |
⊢ ( 𝜑 → ran ( 𝐺 ‘ 𝐴 ) ⊆ On ) |
66 |
|
onssnum |
⊢ ( ( ran ( 𝐺 ‘ 𝐴 ) ∈ V ∧ ran ( 𝐺 ‘ 𝐴 ) ⊆ On ) → ran ( 𝐺 ‘ 𝐴 ) ∈ dom card ) |
67 |
5 65 66
|
sylancr |
⊢ ( 𝜑 → ran ( 𝐺 ‘ 𝐴 ) ∈ dom card ) |
68 |
|
f1f1orn |
⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ran ( 𝐺 ‘ 𝐴 ) ) |
69 |
62 68
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ran ( 𝐺 ‘ 𝐴 ) ) |
70 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V |
71 |
70
|
f1oen |
⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ran ( 𝐺 ‘ 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ≈ ran ( 𝐺 ‘ 𝐴 ) ) |
72 |
|
ennum |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ≈ ran ( 𝐺 ‘ 𝐴 ) → ( ( 𝑅1 ‘ 𝐴 ) ∈ dom card ↔ ran ( 𝐺 ‘ 𝐴 ) ∈ dom card ) ) |
73 |
69 71 72
|
3syl |
⊢ ( 𝜑 → ( ( 𝑅1 ‘ 𝐴 ) ∈ dom card ↔ ran ( 𝐺 ‘ 𝐴 ) ∈ dom card ) ) |
74 |
67 73
|
mpbird |
⊢ ( 𝜑 → ( 𝑅1 ‘ 𝐴 ) ∈ dom card ) |