| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfac12.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  On )  | 
						
						
							| 2 | 
							
								
							 | 
							dfac12.3 | 
							⊢ ( 𝜑  →  𝐹 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On )  | 
						
						
							| 3 | 
							
								
							 | 
							dfac12.4 | 
							⊢ 𝐺  =  recs ( ( 𝑥  ∈  V  ↦  ( 𝑦  ∈  ( 𝑅1 ‘ dom  𝑥 )  ↦  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ,  ( 𝐹 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 ) ) ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝐺 ‘ 𝐴 )  ∈  V  | 
						
						
							| 5 | 
							
								4
							 | 
							rnex | 
							⊢ ran  ( 𝐺 ‘ 𝐴 )  ∈  V  | 
						
						
							| 6 | 
							
								
							 | 
							ssid | 
							⊢ 𝐴  ⊆  𝐴  | 
						
						
							| 7 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝑚  ⊆  𝐴  ↔  𝑛  ⊆  𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝐺 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝑛 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( ( 𝐺 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝑛 )  →  ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝑅1 ‘ 𝑚 )  =  ( 𝑅1 ‘ 𝑛 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							f1eq2 | 
							⊢ ( ( 𝑅1 ‘ 𝑚 )  =  ( 𝑅1 ‘ 𝑛 )  →  ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							bitrd | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  | 
						
						
							| 15 | 
							
								7 14
							 | 
							imbi12d | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝑚  ⊆  𝐴  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On )  ↔  ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							imbi2d | 
							⊢ ( 𝑚  =  𝑛  →  ( ( 𝜑  →  ( 𝑚  ⊆  𝐴  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) )  ↔  ( 𝜑  →  ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							sseq1 | 
							⊢ ( 𝑚  =  𝐴  →  ( 𝑚  ⊆  𝐴  ↔  𝐴  ⊆  𝐴 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝐴  →  ( 𝐺 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐴 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( ( 𝐺 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝐴 )  →  ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( 𝑚  =  𝐴  →  ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝐴  →  ( 𝑅1 ‘ 𝑚 )  =  ( 𝑅1 ‘ 𝐴 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							f1eq2 | 
							⊢ ( ( 𝑅1 ‘ 𝑚 )  =  ( 𝑅1 ‘ 𝐴 )  →  ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							⊢ ( 𝑚  =  𝐴  →  ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							bitrd | 
							⊢ ( 𝑚  =  𝐴  →  ( ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) )  | 
						
						
							| 25 | 
							
								17 24
							 | 
							imbi12d | 
							⊢ ( 𝑚  =  𝐴  →  ( ( 𝑚  ⊆  𝐴  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On )  ↔  ( 𝐴  ⊆  𝐴  →  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							imbi2d | 
							⊢ ( 𝑚  =  𝐴  →  ( ( 𝜑  →  ( 𝑚  ⊆  𝐴  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) )  ↔  ( 𝜑  →  ( 𝐴  ⊆  𝐴  →  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							r19.21v | 
							⊢ ( ∀ 𝑛  ∈  𝑚 ( 𝜑  →  ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  ↔  ( 𝜑  →  ∀ 𝑛  ∈  𝑚 ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eloni | 
							⊢ ( 𝑚  ∈  On  →  Ord  𝑚 )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  →  Ord  𝑚 )  | 
						
						
							| 30 | 
							
								
							 | 
							ordelss | 
							⊢ ( ( Ord  𝑚  ∧  𝑛  ∈  𝑚 )  →  𝑛  ⊆  𝑚 )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							sylan | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  𝑛  ∈  𝑚 )  →  𝑛  ⊆  𝑚 )  | 
						
						
							| 32 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  𝑛  ∈  𝑚 )  →  𝑚  ⊆  𝐴 )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							sstrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  𝑛  ∈  𝑚 )  →  𝑛  ⊆  𝐴 )  | 
						
						
							| 34 | 
							
								
							 | 
							pm5.5 | 
							⊢ ( 𝑛  ⊆  𝐴  →  ( ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  ↔  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  𝑛  ∈  𝑚 )  →  ( ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  ↔  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ralbidva | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  →  ( ∀ 𝑛  ∈  𝑚 ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  ↔  ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  | 
						
						
							| 37 | 
							
								1
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  𝐴  ∈  On )  | 
						
						
							| 38 | 
							
								2
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  𝐹 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝐴 ) ) –1-1→ On )  | 
						
						
							| 39 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  𝑚  ∈  On )  | 
						
						
							| 40 | 
							
								
							 | 
							eqid | 
							⊢ ( ◡ OrdIso (  E  ,  ran  ( 𝐺 ‘ ∪  𝑚 ) )  ∘  ( 𝐺 ‘ ∪  𝑚 ) )  =  ( ◡ OrdIso (  E  ,  ran  ( 𝐺 ‘ ∪  𝑚 ) )  ∘  ( 𝐺 ‘ ∪  𝑚 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  𝑚  ⊆  𝐴 )  | 
						
						
							| 42 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  | 
						
						
							| 43 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑧  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑧 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							f1eq1 | 
							⊢ ( ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑧 )  →  ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							syl | 
							⊢ ( 𝑛  =  𝑧  →  ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  | 
						
						
							| 46 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑧  →  ( 𝑅1 ‘ 𝑛 )  =  ( 𝑅1 ‘ 𝑧 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							f1eq2 | 
							⊢ ( ( 𝑅1 ‘ 𝑛 )  =  ( 𝑅1 ‘ 𝑧 )  →  ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							⊢ ( 𝑛  =  𝑧  →  ( ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) )  | 
						
						
							| 49 | 
							
								45 48
							 | 
							bitrd | 
							⊢ ( 𝑛  =  𝑧  →  ( ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On  ↔  ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On  ↔  ∀ 𝑧  ∈  𝑚 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On )  | 
						
						
							| 51 | 
							
								42 50
							 | 
							sylib | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  ∀ 𝑧  ∈  𝑚 ( 𝐺 ‘ 𝑧 ) : ( 𝑅1 ‘ 𝑧 ) –1-1→ On )  | 
						
						
							| 52 | 
							
								37 38 3 39 40 41 51
							 | 
							dfac12lem2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  ∧  ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On )  | 
						
						
							| 53 | 
							
								52
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  →  ( ∀ 𝑛  ∈  𝑚 ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) )  | 
						
						
							| 54 | 
							
								36 53
							 | 
							sylbid | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  On  ∧  𝑚  ⊆  𝐴 ) )  →  ( ∀ 𝑛  ∈  𝑚 ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							expr | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  On )  →  ( 𝑚  ⊆  𝐴  →  ( ∀ 𝑛  ∈  𝑚 ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							com23 | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  On )  →  ( ∀ 𝑛  ∈  𝑚 ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  ( 𝑚  ⊆  𝐴  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							expcom | 
							⊢ ( 𝑚  ∈  On  →  ( 𝜑  →  ( ∀ 𝑛  ∈  𝑚 ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On )  →  ( 𝑚  ⊆  𝐴  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							a2d | 
							⊢ ( 𝑚  ∈  On  →  ( ( 𝜑  →  ∀ 𝑛  ∈  𝑚 ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  →  ( 𝜑  →  ( 𝑚  ⊆  𝐴  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) )  | 
						
						
							| 59 | 
							
								27 58
							 | 
							biimtrid | 
							⊢ ( 𝑚  ∈  On  →  ( ∀ 𝑛  ∈  𝑚 ( 𝜑  →  ( 𝑛  ⊆  𝐴  →  ( 𝐺 ‘ 𝑛 ) : ( 𝑅1 ‘ 𝑛 ) –1-1→ On ) )  →  ( 𝜑  →  ( 𝑚  ⊆  𝐴  →  ( 𝐺 ‘ 𝑚 ) : ( 𝑅1 ‘ 𝑚 ) –1-1→ On ) ) ) )  | 
						
						
							| 60 | 
							
								16 26 59
							 | 
							tfis3 | 
							⊢ ( 𝐴  ∈  On  →  ( 𝜑  →  ( 𝐴  ⊆  𝐴  →  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) ) )  | 
						
						
							| 61 | 
							
								1 60
							 | 
							mpcom | 
							⊢ ( 𝜑  →  ( 𝐴  ⊆  𝐴  →  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On ) )  | 
						
						
							| 62 | 
							
								6 61
							 | 
							mpi | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On )  | 
						
						
							| 63 | 
							
								
							 | 
							f1f | 
							⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On  →  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) ⟶ On )  | 
						
						
							| 64 | 
							
								
							 | 
							frn | 
							⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) ⟶ On  →  ran  ( 𝐺 ‘ 𝐴 )  ⊆  On )  | 
						
						
							| 65 | 
							
								62 63 64
							 | 
							3syl | 
							⊢ ( 𝜑  →  ran  ( 𝐺 ‘ 𝐴 )  ⊆  On )  | 
						
						
							| 66 | 
							
								
							 | 
							onssnum | 
							⊢ ( ( ran  ( 𝐺 ‘ 𝐴 )  ∈  V  ∧  ran  ( 𝐺 ‘ 𝐴 )  ⊆  On )  →  ran  ( 𝐺 ‘ 𝐴 )  ∈  dom  card )  | 
						
						
							| 67 | 
							
								5 65 66
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ran  ( 𝐺 ‘ 𝐴 )  ∈  dom  card )  | 
						
						
							| 68 | 
							
								
							 | 
							f1f1orn | 
							⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1→ On  →  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ran  ( 𝐺 ‘ 𝐴 ) )  | 
						
						
							| 69 | 
							
								62 68
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ran  ( 𝐺 ‘ 𝐴 ) )  | 
						
						
							| 70 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝑅1 ‘ 𝐴 )  ∈  V  | 
						
						
							| 71 | 
							
								70
							 | 
							f1oen | 
							⊢ ( ( 𝐺 ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ran  ( 𝐺 ‘ 𝐴 )  →  ( 𝑅1 ‘ 𝐴 )  ≈  ran  ( 𝐺 ‘ 𝐴 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							ennum | 
							⊢ ( ( 𝑅1 ‘ 𝐴 )  ≈  ran  ( 𝐺 ‘ 𝐴 )  →  ( ( 𝑅1 ‘ 𝐴 )  ∈  dom  card  ↔  ran  ( 𝐺 ‘ 𝐴 )  ∈  dom  card ) )  | 
						
						
							| 73 | 
							
								69 71 72
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ( 𝑅1 ‘ 𝐴 )  ∈  dom  card  ↔  ran  ( 𝐺 ‘ 𝐴 )  ∈  dom  card ) )  | 
						
						
							| 74 | 
							
								67 73
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( 𝑅1 ‘ 𝐴 )  ∈  dom  card )  |