Step |
Hyp |
Ref |
Expression |
1 |
|
rankwflemb |
⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑧 ∈ On 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) ) |
2 |
|
harcl |
⊢ ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ On |
3 |
|
pweq |
⊢ ( 𝑥 = ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) → 𝒫 𝑥 = 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) → ( 𝒫 𝑥 ∈ dom card ↔ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ dom card ) ) |
5 |
4
|
rspcv |
⊢ ( ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ On → ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ dom card ) ) |
6 |
2 5
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ dom card ) |
7 |
|
cardid2 |
⊢ ( 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ∈ dom card → ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ≈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) |
8 |
|
ensym |
⊢ ( ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ≈ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) → 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ≈ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ) |
9 |
|
bren |
⊢ ( 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ≈ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ↔ ∃ 𝑓 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ On ) → 𝑧 ∈ On ) |
11 |
|
f1of1 |
⊢ ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) → 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ On ) → 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ) |
13 |
|
cardon |
⊢ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∈ On |
14 |
13
|
onssi |
⊢ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ⊆ On |
15 |
|
f1ss |
⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ⊆ On ) → 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ On ) |
16 |
12 14 15
|
sylancl |
⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ On ) → 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ On ) |
17 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝑏 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑦 = 𝑏 → ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) = ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) ) |
19 |
|
suceq |
⊢ ( ( rank ‘ 𝑦 ) = ( rank ‘ 𝑏 ) → suc ( rank ‘ 𝑦 ) = suc ( rank ‘ 𝑏 ) ) |
20 |
17 19
|
syl |
⊢ ( 𝑦 = 𝑏 → suc ( rank ‘ 𝑦 ) = suc ( rank ‘ 𝑏 ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ) |
22 |
|
id |
⊢ ( 𝑦 = 𝑏 → 𝑦 = 𝑏 ) |
23 |
21 22
|
fveq12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) = ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) |
24 |
18 23
|
oveq12d |
⊢ ( 𝑦 = 𝑏 → ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) = ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ) |
25 |
|
imaeq2 |
⊢ ( 𝑦 = 𝑏 → ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) = ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) = ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) |
27 |
24 26
|
ifeq12d |
⊢ ( 𝑦 = 𝑏 → if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) = if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) ) |
28 |
27
|
cbvmptv |
⊢ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) ) |
29 |
|
dmeq |
⊢ ( 𝑥 = 𝑎 → dom 𝑥 = dom 𝑎 ) |
30 |
29
|
fveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑅1 ‘ dom 𝑥 ) = ( 𝑅1 ‘ dom 𝑎 ) ) |
31 |
29
|
unieqd |
⊢ ( 𝑥 = 𝑎 → ∪ dom 𝑥 = ∪ dom 𝑎 ) |
32 |
29 31
|
eqeq12d |
⊢ ( 𝑥 = 𝑎 → ( dom 𝑥 = ∪ dom 𝑥 ↔ dom 𝑎 = ∪ dom 𝑎 ) ) |
33 |
|
rneq |
⊢ ( 𝑥 = 𝑎 → ran 𝑥 = ran 𝑎 ) |
34 |
33
|
unieqd |
⊢ ( 𝑥 = 𝑎 → ∪ ran 𝑥 = ∪ ran 𝑎 ) |
35 |
34
|
rneqd |
⊢ ( 𝑥 = 𝑎 → ran ∪ ran 𝑥 = ran ∪ ran 𝑎 ) |
36 |
35
|
unieqd |
⊢ ( 𝑥 = 𝑎 → ∪ ran ∪ ran 𝑥 = ∪ ran ∪ ran 𝑎 ) |
37 |
|
suceq |
⊢ ( ∪ ran ∪ ran 𝑥 = ∪ ran ∪ ran 𝑎 → suc ∪ ran ∪ ran 𝑥 = suc ∪ ran ∪ ran 𝑎 ) |
38 |
36 37
|
syl |
⊢ ( 𝑥 = 𝑎 → suc ∪ ran ∪ ran 𝑥 = suc ∪ ran ∪ ran 𝑎 ) |
39 |
38
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) = ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) ) |
40 |
|
fveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) = ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ) |
41 |
40
|
fveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) = ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) |
42 |
39 41
|
oveq12d |
⊢ ( 𝑥 = 𝑎 → ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) = ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ) |
43 |
|
id |
⊢ ( 𝑥 = 𝑎 → 𝑥 = 𝑎 ) |
44 |
43 31
|
fveq12d |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ‘ ∪ dom 𝑥 ) = ( 𝑎 ‘ ∪ dom 𝑎 ) ) |
45 |
44
|
rneqd |
⊢ ( 𝑥 = 𝑎 → ran ( 𝑥 ‘ ∪ dom 𝑥 ) = ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) |
46 |
|
oieq2 |
⊢ ( ran ( 𝑥 ‘ ∪ dom 𝑥 ) = ran ( 𝑎 ‘ ∪ dom 𝑎 ) → OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ) |
47 |
45 46
|
syl |
⊢ ( 𝑥 = 𝑎 → OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ) |
48 |
47
|
cnveqd |
⊢ ( 𝑥 = 𝑎 → ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ) |
49 |
48 44
|
coeq12d |
⊢ ( 𝑥 = 𝑎 → ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) = ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) ) |
50 |
49
|
imaeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) = ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) |
51 |
50
|
fveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) = ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) |
52 |
32 42 51
|
ifbieq12d |
⊢ ( 𝑥 = 𝑎 → if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) = if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) |
53 |
30 52
|
mpteq12dv |
⊢ ( 𝑥 = 𝑎 → ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑏 ) ) ) ) = ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) |
54 |
28 53
|
eqtrid |
⊢ ( 𝑥 = 𝑎 → ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) = ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) |
55 |
54
|
cbvmptv |
⊢ ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) = ( 𝑎 ∈ V ↦ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) |
56 |
|
recseq |
⊢ ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) = ( 𝑎 ∈ V ↦ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) → recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) = recs ( ( 𝑎 ∈ V ↦ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) ) ) |
57 |
55 56
|
ax-mp |
⊢ recs ( ( 𝑥 ∈ V ↦ ( 𝑦 ∈ ( 𝑅1 ‘ dom 𝑥 ) ↦ if ( dom 𝑥 = ∪ dom 𝑥 , ( ( suc ∪ ran ∪ ran 𝑥 ·o ( rank ‘ 𝑦 ) ) +o ( ( 𝑥 ‘ suc ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑥 ‘ ∪ dom 𝑥 ) ) ∘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) “ 𝑦 ) ) ) ) ) ) = recs ( ( 𝑎 ∈ V ↦ ( 𝑏 ∈ ( 𝑅1 ‘ dom 𝑎 ) ↦ if ( dom 𝑎 = ∪ dom 𝑎 , ( ( suc ∪ ran ∪ ran 𝑎 ·o ( rank ‘ 𝑏 ) ) +o ( ( 𝑎 ‘ suc ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) , ( 𝑓 ‘ ( ( ◡ OrdIso ( E , ran ( 𝑎 ‘ ∪ dom 𝑎 ) ) ∘ ( 𝑎 ‘ ∪ dom 𝑎 ) ) “ 𝑏 ) ) ) ) ) ) |
58 |
10 16 57
|
dfac12lem3 |
⊢ ( ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ On ) → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) |
59 |
58
|
ex |
⊢ ( 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) → ( 𝑧 ∈ On → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) ) |
60 |
59
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) → ( 𝑧 ∈ On → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) ) |
61 |
9 60
|
sylbi |
⊢ ( 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ≈ ( card ‘ 𝒫 ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) → ( 𝑧 ∈ On → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) ) |
62 |
6 7 8 61
|
4syl |
⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ( 𝑧 ∈ On → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) ) |
63 |
62
|
imp |
⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑅1 ‘ 𝑧 ) ∈ dom card ) |
64 |
|
r1suc |
⊢ ( 𝑧 ∈ On → ( 𝑅1 ‘ suc 𝑧 ) = 𝒫 ( 𝑅1 ‘ 𝑧 ) ) |
65 |
64
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑅1 ‘ suc 𝑧 ) = 𝒫 ( 𝑅1 ‘ 𝑧 ) ) |
66 |
65
|
eleq2d |
⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) ↔ 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑧 ) ) ) |
67 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑧 ) → 𝑦 ⊆ ( 𝑅1 ‘ 𝑧 ) ) |
68 |
66 67
|
syl6bi |
⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) → 𝑦 ⊆ ( 𝑅1 ‘ 𝑧 ) ) ) |
69 |
|
ssnum |
⊢ ( ( ( 𝑅1 ‘ 𝑧 ) ∈ dom card ∧ 𝑦 ⊆ ( 𝑅1 ‘ 𝑧 ) ) → 𝑦 ∈ dom card ) |
70 |
63 68 69
|
syl6an |
⊢ ( ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ∧ 𝑧 ∈ On ) → ( 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) → 𝑦 ∈ dom card ) ) |
71 |
70
|
rexlimdva |
⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ( ∃ 𝑧 ∈ On 𝑦 ∈ ( 𝑅1 ‘ suc 𝑧 ) → 𝑦 ∈ dom card ) ) |
72 |
1 71
|
syl5bi |
⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) → 𝑦 ∈ dom card ) ) |
73 |
72
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ∪ ( 𝑅1 “ On ) ⊆ dom card ) |
74 |
|
onwf |
⊢ On ⊆ ∪ ( 𝑅1 “ On ) |
75 |
74
|
sseli |
⊢ ( 𝑥 ∈ On → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
76 |
|
pwwf |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
77 |
75 76
|
sylib |
⊢ ( 𝑥 ∈ On → 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
78 |
|
ssel |
⊢ ( ∪ ( 𝑅1 “ On ) ⊆ dom card → ( 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝑥 ∈ dom card ) ) |
79 |
77 78
|
syl5 |
⊢ ( ∪ ( 𝑅1 “ On ) ⊆ dom card → ( 𝑥 ∈ On → 𝒫 𝑥 ∈ dom card ) ) |
80 |
79
|
ralrimiv |
⊢ ( ∪ ( 𝑅1 “ On ) ⊆ dom card → ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ) |
81 |
73 80
|
impbii |
⊢ ( ∀ 𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∪ ( 𝑅1 “ On ) ⊆ dom card ) |