| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rankwflemb | 
							⊢ ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  ↔  ∃ 𝑧  ∈  On 𝑦  ∈  ( 𝑅1 ‘ suc  𝑧 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							harcl | 
							⊢ ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  ∈  On  | 
						
						
							| 3 | 
							
								
							 | 
							pweq | 
							⊢ ( 𝑥  =  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  →  𝒫  𝑥  =  𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eleq1d | 
							⊢ ( 𝑥  =  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  →  ( 𝒫  𝑥  ∈  dom  card  ↔  𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  ∈  dom  card ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							rspcv | 
							⊢ ( ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  ∈  On  →  ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  →  𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  ∈  dom  card ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							ax-mp | 
							⊢ ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  →  𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  ∈  dom  card )  | 
						
						
							| 7 | 
							
								
							 | 
							cardid2 | 
							⊢ ( 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  ∈  dom  card  →  ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ≈  𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ensym | 
							⊢ ( ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ≈  𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  →  𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  ≈  ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							bren | 
							⊢ ( 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  ≈  ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ↔  ∃ 𝑓 𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ∧  𝑧  ∈  On )  →  𝑧  ∈  On )  | 
						
						
							| 11 | 
							
								
							 | 
							f1of1 | 
							⊢ ( 𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  →  𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ∧  𝑧  ∈  On )  →  𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							cardon | 
							⊢ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ∈  On  | 
						
						
							| 14 | 
							
								13
							 | 
							onssi | 
							⊢ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ⊆  On  | 
						
						
							| 15 | 
							
								
							 | 
							f1ss | 
							⊢ ( ( 𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ∧  ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ⊆  On )  →  𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ On )  | 
						
						
							| 16 | 
							
								12 14 15
							 | 
							sylancl | 
							⊢ ( ( 𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ∧  𝑧  ∈  On )  →  𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1→ On )  | 
						
						
							| 17 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  𝑏  →  ( rank ‘ 𝑦 )  =  ( rank ‘ 𝑏 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq2d | 
							⊢ ( 𝑦  =  𝑏  →  ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  =  ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑏 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							suceq | 
							⊢ ( ( rank ‘ 𝑦 )  =  ( rank ‘ 𝑏 )  →  suc  ( rank ‘ 𝑦 )  =  suc  ( rank ‘ 𝑏 ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							syl | 
							⊢ ( 𝑦  =  𝑏  →  suc  ( rank ‘ 𝑦 )  =  suc  ( rank ‘ 𝑏 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							fveq2d | 
							⊢ ( 𝑦  =  𝑏  →  ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) )  =  ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							id | 
							⊢ ( 𝑦  =  𝑏  →  𝑦  =  𝑏 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							fveq12d | 
							⊢ ( 𝑦  =  𝑏  →  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 )  =  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) )  | 
						
						
							| 24 | 
							
								18 23
							 | 
							oveq12d | 
							⊢ ( 𝑦  =  𝑏  →  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) )  =  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							imaeq2 | 
							⊢ ( 𝑦  =  𝑏  →  ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 )  =  ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑏 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							fveq2d | 
							⊢ ( 𝑦  =  𝑏  →  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 ) )  =  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑏 ) ) )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							ifeq12d | 
							⊢ ( 𝑦  =  𝑏  →  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 ) ) )  =  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑏 ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							cbvmptv | 
							⊢ ( 𝑦  ∈  ( 𝑅1 ‘ dom  𝑥 )  ↦  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 ) ) ) )  =  ( 𝑏  ∈  ( 𝑅1 ‘ dom  𝑥 )  ↦  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑏 ) ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							dmeq | 
							⊢ ( 𝑥  =  𝑎  →  dom  𝑥  =  dom  𝑎 )  | 
						
						
							| 30 | 
							
								29
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑎  →  ( 𝑅1 ‘ dom  𝑥 )  =  ( 𝑅1 ‘ dom  𝑎 ) )  | 
						
						
							| 31 | 
							
								29
							 | 
							unieqd | 
							⊢ ( 𝑥  =  𝑎  →  ∪  dom  𝑥  =  ∪  dom  𝑎 )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝑎  →  ( dom  𝑥  =  ∪  dom  𝑥  ↔  dom  𝑎  =  ∪  dom  𝑎 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							rneq | 
							⊢ ( 𝑥  =  𝑎  →  ran  𝑥  =  ran  𝑎 )  | 
						
						
							| 34 | 
							
								33
							 | 
							unieqd | 
							⊢ ( 𝑥  =  𝑎  →  ∪  ran  𝑥  =  ∪  ran  𝑎 )  | 
						
						
							| 35 | 
							
								34
							 | 
							rneqd | 
							⊢ ( 𝑥  =  𝑎  →  ran  ∪  ran  𝑥  =  ran  ∪  ran  𝑎 )  | 
						
						
							| 36 | 
							
								35
							 | 
							unieqd | 
							⊢ ( 𝑥  =  𝑎  →  ∪  ran  ∪  ran  𝑥  =  ∪  ran  ∪  ran  𝑎 )  | 
						
						
							| 37 | 
							
								
							 | 
							suceq | 
							⊢ ( ∪  ran  ∪  ran  𝑥  =  ∪  ran  ∪  ran  𝑎  →  suc  ∪  ran  ∪  ran  𝑥  =  suc  ∪  ran  ∪  ran  𝑎 )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							⊢ ( 𝑥  =  𝑎  →  suc  ∪  ran  ∪  ran  𝑥  =  suc  ∪  ran  ∪  ran  𝑎 )  | 
						
						
							| 39 | 
							
								38
							 | 
							oveq1d | 
							⊢ ( 𝑥  =  𝑎  →  ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑏 ) )  =  ( suc  ∪  ran  ∪  ran  𝑎  ·o  ( rank ‘ 𝑏 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑥  =  𝑎  →  ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) )  =  ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							fveq1d | 
							⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 )  =  ( ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  𝑎  →  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) )  =  ( ( suc  ∪  ran  ∪  ran  𝑎  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝑎  →  𝑥  =  𝑎 )  | 
						
						
							| 44 | 
							
								43 31
							 | 
							fveq12d | 
							⊢ ( 𝑥  =  𝑎  →  ( 𝑥 ‘ ∪  dom  𝑥 )  =  ( 𝑎 ‘ ∪  dom  𝑎 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							rneqd | 
							⊢ ( 𝑥  =  𝑎  →  ran  ( 𝑥 ‘ ∪  dom  𝑥 )  =  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							oieq2 | 
							⊢ ( ran  ( 𝑥 ‘ ∪  dom  𝑥 )  =  ran  ( 𝑎 ‘ ∪  dom  𝑎 )  →  OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  =  OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							syl | 
							⊢ ( 𝑥  =  𝑎  →  OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  =  OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							cnveqd | 
							⊢ ( 𝑥  =  𝑎  →  ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  =  ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) ) )  | 
						
						
							| 49 | 
							
								48 44
							 | 
							coeq12d | 
							⊢ ( 𝑥  =  𝑎  →  ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  =  ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							imaeq1d | 
							⊢ ( 𝑥  =  𝑎  →  ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑏 )  =  ( ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) )  “  𝑏 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝑎  →  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑏 ) )  =  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) )  “  𝑏 ) ) )  | 
						
						
							| 52 | 
							
								32 42 51
							 | 
							ifbieq12d | 
							⊢ ( 𝑥  =  𝑎  →  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑏 ) ) )  =  if ( dom  𝑎  =  ∪  dom  𝑎 ,  ( ( suc  ∪  ran  ∪  ran  𝑎  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) )  “  𝑏 ) ) ) )  | 
						
						
							| 53 | 
							
								30 52
							 | 
							mpteq12dv | 
							⊢ ( 𝑥  =  𝑎  →  ( 𝑏  ∈  ( 𝑅1 ‘ dom  𝑥 )  ↦  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑏 ) ) ) )  =  ( 𝑏  ∈  ( 𝑅1 ‘ dom  𝑎 )  ↦  if ( dom  𝑎  =  ∪  dom  𝑎 ,  ( ( suc  ∪  ran  ∪  ran  𝑎  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) )  “  𝑏 ) ) ) ) )  | 
						
						
							| 54 | 
							
								28 53
							 | 
							eqtrid | 
							⊢ ( 𝑥  =  𝑎  →  ( 𝑦  ∈  ( 𝑅1 ‘ dom  𝑥 )  ↦  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 ) ) ) )  =  ( 𝑏  ∈  ( 𝑅1 ‘ dom  𝑎 )  ↦  if ( dom  𝑎  =  ∪  dom  𝑎 ,  ( ( suc  ∪  ran  ∪  ran  𝑎  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) )  “  𝑏 ) ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							cbvmptv | 
							⊢ ( 𝑥  ∈  V  ↦  ( 𝑦  ∈  ( 𝑅1 ‘ dom  𝑥 )  ↦  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 ) ) ) ) )  =  ( 𝑎  ∈  V  ↦  ( 𝑏  ∈  ( 𝑅1 ‘ dom  𝑎 )  ↦  if ( dom  𝑎  =  ∪  dom  𝑎 ,  ( ( suc  ∪  ran  ∪  ran  𝑎  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) )  “  𝑏 ) ) ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							recseq | 
							⊢ ( ( 𝑥  ∈  V  ↦  ( 𝑦  ∈  ( 𝑅1 ‘ dom  𝑥 )  ↦  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 ) ) ) ) )  =  ( 𝑎  ∈  V  ↦  ( 𝑏  ∈  ( 𝑅1 ‘ dom  𝑎 )  ↦  if ( dom  𝑎  =  ∪  dom  𝑎 ,  ( ( suc  ∪  ran  ∪  ran  𝑎  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) )  “  𝑏 ) ) ) ) )  →  recs ( ( 𝑥  ∈  V  ↦  ( 𝑦  ∈  ( 𝑅1 ‘ dom  𝑥 )  ↦  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 ) ) ) ) ) )  =  recs ( ( 𝑎  ∈  V  ↦  ( 𝑏  ∈  ( 𝑅1 ‘ dom  𝑎 )  ↦  if ( dom  𝑎  =  ∪  dom  𝑎 ,  ( ( suc  ∪  ran  ∪  ran  𝑎  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) )  “  𝑏 ) ) ) ) ) ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							ax-mp | 
							⊢ recs ( ( 𝑥  ∈  V  ↦  ( 𝑦  ∈  ( 𝑅1 ‘ dom  𝑥 )  ↦  if ( dom  𝑥  =  ∪  dom  𝑥 ,  ( ( suc  ∪  ran  ∪  ran  𝑥  ·o  ( rank ‘ 𝑦 ) )  +o  ( ( 𝑥 ‘ suc  ( rank ‘ 𝑦 ) ) ‘ 𝑦 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑥 ‘ ∪  dom  𝑥 ) )  ∘  ( 𝑥 ‘ ∪  dom  𝑥 ) )  “  𝑦 ) ) ) ) ) )  =  recs ( ( 𝑎  ∈  V  ↦  ( 𝑏  ∈  ( 𝑅1 ‘ dom  𝑎 )  ↦  if ( dom  𝑎  =  ∪  dom  𝑎 ,  ( ( suc  ∪  ran  ∪  ran  𝑎  ·o  ( rank ‘ 𝑏 ) )  +o  ( ( 𝑎 ‘ suc  ( rank ‘ 𝑏 ) ) ‘ 𝑏 ) ) ,  ( 𝑓 ‘ ( ( ◡ OrdIso (  E  ,  ran  ( 𝑎 ‘ ∪  dom  𝑎 ) )  ∘  ( 𝑎 ‘ ∪  dom  𝑎 ) )  “  𝑏 ) ) ) ) ) )  | 
						
						
							| 58 | 
							
								10 16 57
							 | 
							dfac12lem3 | 
							⊢ ( ( 𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  ∧  𝑧  ∈  On )  →  ( 𝑅1 ‘ 𝑧 )  ∈  dom  card )  | 
						
						
							| 59 | 
							
								58
							 | 
							ex | 
							⊢ ( 𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  →  ( 𝑧  ∈  On  →  ( 𝑅1 ‘ 𝑧 )  ∈  dom  card ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							exlimiv | 
							⊢ ( ∃ 𝑓 𝑓 : 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) –1-1-onto→ ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  →  ( 𝑧  ∈  On  →  ( 𝑅1 ‘ 𝑧 )  ∈  dom  card ) )  | 
						
						
							| 61 | 
							
								9 60
							 | 
							sylbi | 
							⊢ ( 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) )  ≈  ( card ‘ 𝒫  ( har ‘ ( 𝑅1 ‘ 𝑧 ) ) )  →  ( 𝑧  ∈  On  →  ( 𝑅1 ‘ 𝑧 )  ∈  dom  card ) )  | 
						
						
							| 62 | 
							
								6 7 8 61
							 | 
							4syl | 
							⊢ ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  →  ( 𝑧  ∈  On  →  ( 𝑅1 ‘ 𝑧 )  ∈  dom  card ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							imp | 
							⊢ ( ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  ∧  𝑧  ∈  On )  →  ( 𝑅1 ‘ 𝑧 )  ∈  dom  card )  | 
						
						
							| 64 | 
							
								
							 | 
							r1suc | 
							⊢ ( 𝑧  ∈  On  →  ( 𝑅1 ‘ suc  𝑧 )  =  𝒫  ( 𝑅1 ‘ 𝑧 ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							adantl | 
							⊢ ( ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  ∧  𝑧  ∈  On )  →  ( 𝑅1 ‘ suc  𝑧 )  =  𝒫  ( 𝑅1 ‘ 𝑧 ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							eleq2d | 
							⊢ ( ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  ∧  𝑧  ∈  On )  →  ( 𝑦  ∈  ( 𝑅1 ‘ suc  𝑧 )  ↔  𝑦  ∈  𝒫  ( 𝑅1 ‘ 𝑧 ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑦  ∈  𝒫  ( 𝑅1 ‘ 𝑧 )  →  𝑦  ⊆  ( 𝑅1 ‘ 𝑧 ) )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							biimtrdi | 
							⊢ ( ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  ∧  𝑧  ∈  On )  →  ( 𝑦  ∈  ( 𝑅1 ‘ suc  𝑧 )  →  𝑦  ⊆  ( 𝑅1 ‘ 𝑧 ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							ssnum | 
							⊢ ( ( ( 𝑅1 ‘ 𝑧 )  ∈  dom  card  ∧  𝑦  ⊆  ( 𝑅1 ‘ 𝑧 ) )  →  𝑦  ∈  dom  card )  | 
						
						
							| 70 | 
							
								63 68 69
							 | 
							syl6an | 
							⊢ ( ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  ∧  𝑧  ∈  On )  →  ( 𝑦  ∈  ( 𝑅1 ‘ suc  𝑧 )  →  𝑦  ∈  dom  card ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							rexlimdva | 
							⊢ ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  →  ( ∃ 𝑧  ∈  On 𝑦  ∈  ( 𝑅1 ‘ suc  𝑧 )  →  𝑦  ∈  dom  card ) )  | 
						
						
							| 72 | 
							
								1 71
							 | 
							biimtrid | 
							⊢ ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  →  ( 𝑦  ∈  ∪  ( 𝑅1  “  On )  →  𝑦  ∈  dom  card ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ssrdv | 
							⊢ ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  →  ∪  ( 𝑅1  “  On )  ⊆  dom  card )  | 
						
						
							| 74 | 
							
								
							 | 
							onwf | 
							⊢ On  ⊆  ∪  ( 𝑅1  “  On )  | 
						
						
							| 75 | 
							
								74
							 | 
							sseli | 
							⊢ ( 𝑥  ∈  On  →  𝑥  ∈  ∪  ( 𝑅1  “  On ) )  | 
						
						
							| 76 | 
							
								
							 | 
							pwwf | 
							⊢ ( 𝑥  ∈  ∪  ( 𝑅1  “  On )  ↔  𝒫  𝑥  ∈  ∪  ( 𝑅1  “  On ) )  | 
						
						
							| 77 | 
							
								75 76
							 | 
							sylib | 
							⊢ ( 𝑥  ∈  On  →  𝒫  𝑥  ∈  ∪  ( 𝑅1  “  On ) )  | 
						
						
							| 78 | 
							
								
							 | 
							ssel | 
							⊢ ( ∪  ( 𝑅1  “  On )  ⊆  dom  card  →  ( 𝒫  𝑥  ∈  ∪  ( 𝑅1  “  On )  →  𝒫  𝑥  ∈  dom  card ) )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							syl5 | 
							⊢ ( ∪  ( 𝑅1  “  On )  ⊆  dom  card  →  ( 𝑥  ∈  On  →  𝒫  𝑥  ∈  dom  card ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							ralrimiv | 
							⊢ ( ∪  ( 𝑅1  “  On )  ⊆  dom  card  →  ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card )  | 
						
						
							| 81 | 
							
								73 80
							 | 
							impbii | 
							⊢ ( ∀ 𝑥  ∈  On 𝒫  𝑥  ∈  dom  card  ↔  ∪  ( 𝑅1  “  On )  ⊆  dom  card )  |