Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
acacni |
⊢ ( ( CHOICE ∧ 𝑥 ∈ V ) → AC 𝑥 = V ) |
3 |
2
|
elvd |
⊢ ( CHOICE → AC 𝑥 = V ) |
4 |
1 3
|
eleqtrrid |
⊢ ( CHOICE → 𝑥 ∈ AC 𝑥 ) |
5 |
4
|
alrimiv |
⊢ ( CHOICE → ∀ 𝑥 𝑥 ∈ AC 𝑥 ) |
6 |
|
vpwex |
⊢ 𝒫 𝑧 ∈ V |
7 |
|
id |
⊢ ( 𝑥 = 𝒫 𝑧 → 𝑥 = 𝒫 𝑧 ) |
8 |
|
acneq |
⊢ ( 𝑥 = 𝒫 𝑧 → AC 𝑥 = AC 𝒫 𝑧 ) |
9 |
7 8
|
eleq12d |
⊢ ( 𝑥 = 𝒫 𝑧 → ( 𝑥 ∈ AC 𝑥 ↔ 𝒫 𝑧 ∈ AC 𝒫 𝑧 ) ) |
10 |
6 9
|
spcv |
⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → 𝒫 𝑧 ∈ AC 𝒫 𝑧 ) |
11 |
|
vex |
⊢ 𝑦 ∈ V |
12 |
|
vex |
⊢ 𝑧 ∈ V |
13 |
12
|
canth2 |
⊢ 𝑧 ≺ 𝒫 𝑧 |
14 |
|
sdomdom |
⊢ ( 𝑧 ≺ 𝒫 𝑧 → 𝑧 ≼ 𝒫 𝑧 ) |
15 |
|
acndom2 |
⊢ ( 𝑧 ≼ 𝒫 𝑧 → ( 𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧 ) ) |
16 |
13 14 15
|
mp2b |
⊢ ( 𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧 ) |
17 |
|
acnnum |
⊢ ( 𝑧 ∈ AC 𝒫 𝑧 ↔ 𝑧 ∈ dom card ) |
18 |
16 17
|
sylib |
⊢ ( 𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ dom card ) |
19 |
|
numacn |
⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ dom card → 𝑧 ∈ AC 𝑦 ) ) |
20 |
11 18 19
|
mpsyl |
⊢ ( 𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝑦 ) |
21 |
10 20
|
syl |
⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ AC 𝑦 ) |
22 |
12
|
a1i |
⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ V ) |
23 |
21 22
|
2thd |
⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → ( 𝑧 ∈ AC 𝑦 ↔ 𝑧 ∈ V ) ) |
24 |
23
|
eqrdv |
⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → AC 𝑦 = V ) |
25 |
24
|
alrimiv |
⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → ∀ 𝑦 AC 𝑦 = V ) |
26 |
|
dfacacn |
⊢ ( CHOICE ↔ ∀ 𝑦 AC 𝑦 = V ) |
27 |
25 26
|
sylibr |
⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → CHOICE ) |
28 |
5 27
|
impbii |
⊢ ( CHOICE ↔ ∀ 𝑥 𝑥 ∈ AC 𝑥 ) |