Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑥 ) ) |
2 |
1
|
unieqd |
⊢ ( 𝑘 = 𝑥 → ∪ ( 𝑓 ‘ 𝑘 ) = ∪ ( 𝑓 ‘ 𝑥 ) ) |
3 |
2
|
pweqd |
⊢ ( 𝑘 = 𝑥 → 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) |
4 |
3
|
cbvixpv |
⊢ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) |
5 |
4
|
eleq2i |
⊢ ( 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ↔ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) |
6 |
|
simplr |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑓 : dom 𝑓 ⟶ Top ) |
7 |
6
|
feqmptd |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑓 = ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
8 |
7
|
fveq2d |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ∏t ‘ 𝑓 ) = ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) |
9 |
8
|
fveq2d |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( cls ‘ ( ∏t ‘ 𝑓 ) ) = ( cls ‘ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
10 |
9
|
fveq1d |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) ) |
11 |
|
eqid |
⊢ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) = ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
12 |
|
vex |
⊢ 𝑓 ∈ V |
13 |
12
|
dmex |
⊢ dom 𝑓 ∈ V |
14 |
13
|
a1i |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → dom 𝑓 ∈ V ) |
15 |
6
|
ffvelrnda |
⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑘 ) ∈ Top ) |
16 |
|
toptopon2 |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ Top ↔ ( 𝑓 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝑓 ‘ 𝑘 ) ) ) |
17 |
15 16
|
sylib |
⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝑓 ‘ 𝑘 ) ) ) |
18 |
|
simpr |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) |
19 |
18 5
|
sylibr |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
20 |
|
vex |
⊢ 𝑠 ∈ V |
21 |
20
|
elixp |
⊢ ( 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ↔ ( 𝑠 Fn dom 𝑓 ∧ ∀ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) ) |
22 |
21
|
simprbi |
⊢ ( 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) → ∀ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
23 |
19 22
|
syl |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
24 |
23
|
r19.21bi |
⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
25 |
24
|
elpwid |
⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑠 ‘ 𝑘 ) ⊆ ∪ ( 𝑓 ‘ 𝑘 ) ) |
26 |
|
fvex |
⊢ ( 𝑠 ‘ 𝑘 ) ∈ V |
27 |
13 26
|
iunex |
⊢ ∪ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ V |
28 |
|
simpll |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → CHOICE ) |
29 |
|
acacni |
⊢ ( ( CHOICE ∧ dom 𝑓 ∈ V ) → AC dom 𝑓 = V ) |
30 |
28 13 29
|
sylancl |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → AC dom 𝑓 = V ) |
31 |
27 30
|
eleqtrrid |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ∪ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ AC dom 𝑓 ) |
32 |
11 14 17 25 31
|
ptclsg |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ( cls ‘ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
33 |
10 32
|
eqtrd |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
34 |
5 33
|
sylan2b |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
35 |
34
|
ralrimiva |
⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
36 |
35
|
ex |
⊢ ( CHOICE → ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
37 |
36
|
alrimiv |
⊢ ( CHOICE → ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
38 |
|
vex |
⊢ 𝑔 ∈ V |
39 |
38
|
dmex |
⊢ dom 𝑔 ∈ V |
40 |
39
|
a1i |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → dom 𝑔 ∈ V ) |
41 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑥 ) ∈ V |
42 |
41
|
a1i |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ∈ V ) |
43 |
|
simplrr |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ∅ ∉ ran 𝑔 ) |
44 |
|
df-nel |
⊢ ( ∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔 ) |
45 |
43 44
|
sylib |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ¬ ∅ ∈ ran 𝑔 ) |
46 |
|
funforn |
⊢ ( Fun 𝑔 ↔ 𝑔 : dom 𝑔 –onto→ ran 𝑔 ) |
47 |
|
fof |
⊢ ( 𝑔 : dom 𝑔 –onto→ ran 𝑔 → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
48 |
46 47
|
sylbi |
⊢ ( Fun 𝑔 → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
49 |
48
|
ad2antrl |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
50 |
49
|
ffvelrnda |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ) |
51 |
|
eleq1 |
⊢ ( ( 𝑔 ‘ 𝑥 ) = ∅ → ( ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔 ) ) |
52 |
50 51
|
syl5ibcom |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( ( 𝑔 ‘ 𝑥 ) = ∅ → ∅ ∈ ran 𝑔 ) ) |
53 |
52
|
necon3bd |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( ¬ ∅ ∈ ran 𝑔 → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
54 |
45 53
|
mpd |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
55 |
|
eqid |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) |
56 |
|
eqid |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } |
57 |
|
eqid |
⊢ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) = ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) |
58 |
|
fveq1 |
⊢ ( 𝑠 = 𝑔 → ( 𝑠 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
59 |
58
|
ixpeq2dv |
⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) ) |
60 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑥 ) ) |
61 |
60
|
cbvixpv |
⊢ X 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) = X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) |
62 |
59 61
|
eqtrdi |
⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) = X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) |
63 |
62
|
fveq2d |
⊢ ( 𝑠 = 𝑔 → ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) ) |
64 |
58
|
fveq2d |
⊢ ( 𝑠 = 𝑔 → ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
65 |
64
|
ixpeq2dv |
⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
66 |
60
|
unieqd |
⊢ ( 𝑘 = 𝑥 → ∪ ( 𝑔 ‘ 𝑘 ) = ∪ ( 𝑔 ‘ 𝑥 ) ) |
67 |
66
|
pweqd |
⊢ ( 𝑘 = 𝑥 → 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ) |
68 |
67
|
sneqd |
⊢ ( 𝑘 = 𝑥 → { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } = { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) |
69 |
60 68
|
uneq12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) |
70 |
69
|
pweqd |
⊢ ( 𝑘 = 𝑥 → 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) = 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) |
71 |
67
|
eleq1d |
⊢ ( 𝑘 = 𝑥 → ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 ↔ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 ) ) |
72 |
69
|
eqeq2d |
⊢ ( 𝑘 = 𝑥 → ( 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ↔ 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ) |
73 |
71 72
|
imbi12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ↔ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ) ) |
74 |
70 73
|
rabeqbidv |
⊢ ( 𝑘 = 𝑥 → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) |
75 |
74
|
fveq2d |
⊢ ( 𝑘 = 𝑥 → ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) = ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) |
76 |
75 60
|
fveq12d |
⊢ ( 𝑘 = 𝑥 → ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) = ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
77 |
76
|
cbvixpv |
⊢ X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) |
78 |
65 77
|
eqtrdi |
⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
79 |
63 78
|
eqeq12d |
⊢ ( 𝑠 = 𝑔 → ( ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) |
80 |
|
simpl |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
81 |
|
snex |
⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ∈ V |
82 |
41 81
|
unex |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∈ V |
83 |
|
ssun2 |
⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ⊆ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) |
84 |
41
|
uniex |
⊢ ∪ ( 𝑔 ‘ 𝑥 ) ∈ V |
85 |
84
|
pwex |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ V |
86 |
85
|
snid |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } |
87 |
83 86
|
sselii |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) |
88 |
|
epttop |
⊢ ( ( ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∈ V ∧ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ) |
89 |
82 87 88
|
mp2an |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) |
90 |
89
|
topontopi |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ Top |
91 |
90
|
a1i |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ Top ) |
92 |
91
|
fmpttd |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top ) |
93 |
39
|
mptex |
⊢ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∈ V |
94 |
|
id |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) |
95 |
|
dmeq |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → dom 𝑓 = dom ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) |
96 |
82
|
pwex |
⊢ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∈ V |
97 |
96
|
rabex |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ V |
98 |
|
eqid |
⊢ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) |
99 |
97 98
|
dmmpti |
⊢ dom ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) = dom 𝑔 |
100 |
95 99
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → dom 𝑓 = dom 𝑔 ) |
101 |
94 100
|
feq12d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( 𝑓 : dom 𝑓 ⟶ Top ↔ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top ) ) |
102 |
100
|
ixpeq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
103 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ 𝑘 ) ) |
104 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑘 ) ) |
105 |
104
|
unieqd |
⊢ ( 𝑥 = 𝑘 → ∪ ( 𝑔 ‘ 𝑥 ) = ∪ ( 𝑔 ‘ 𝑘 ) ) |
106 |
105
|
pweqd |
⊢ ( 𝑥 = 𝑘 → 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ) |
107 |
106
|
sneqd |
⊢ ( 𝑥 = 𝑘 → { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } = { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
108 |
104 107
|
uneq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
109 |
108
|
pweqd |
⊢ ( 𝑥 = 𝑘 → 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) = 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
110 |
106
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 ↔ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 ) ) |
111 |
108
|
eqeq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ↔ 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) |
112 |
110 111
|
imbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ↔ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) ) |
113 |
109 112
|
rabeqbidv |
⊢ ( 𝑥 = 𝑘 → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
114 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑘 ) ∈ V |
115 |
|
snex |
⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ∈ V |
116 |
114 115
|
unex |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∈ V |
117 |
116
|
pwex |
⊢ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∈ V |
118 |
117
|
rabex |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ∈ V |
119 |
113 98 118
|
fvmpt |
⊢ ( 𝑘 ∈ dom 𝑔 → ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ 𝑘 ) = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
120 |
103 119
|
sylan9eq |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ( 𝑓 ‘ 𝑘 ) = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
121 |
120
|
unieqd |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ∪ ( 𝑓 ‘ 𝑘 ) = ∪ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
122 |
|
ssun2 |
⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ⊆ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
123 |
114
|
uniex |
⊢ ∪ ( 𝑔 ‘ 𝑘 ) ∈ V |
124 |
123
|
pwex |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ V |
125 |
124
|
snid |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } |
126 |
122 125
|
sselii |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
127 |
|
epttop |
⊢ ( ( ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∈ V ∧ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) |
128 |
116 126 127
|
mp2an |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
129 |
128
|
toponunii |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) = ∪ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } |
130 |
121 129
|
eqtr4di |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ∪ ( 𝑓 ‘ 𝑘 ) = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
131 |
130
|
pweqd |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
132 |
131
|
ixpeq2dva |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑔 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
133 |
102 132
|
eqtrd |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
134 |
|
2fveq3 |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( cls ‘ ( ∏t ‘ 𝑓 ) ) = ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ) |
135 |
100
|
ixpeq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) |
136 |
134 135
|
fveq12d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) ) |
137 |
100
|
ixpeq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
138 |
120
|
fveq2d |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) = ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ) |
139 |
138
|
fveq1d |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
140 |
139
|
ixpeq2dva |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑔 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
141 |
137 140
|
eqtrd |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
142 |
136 141
|
eqeq12d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
143 |
133 142
|
raleqbidv |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
144 |
101 143
|
imbi12d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ↔ ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
145 |
93 144
|
spcv |
⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
146 |
80 92 145
|
sylc |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
147 |
|
simprl |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → Fun 𝑔 ) |
148 |
147
|
funfnd |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → 𝑔 Fn dom 𝑔 ) |
149 |
|
ssun1 |
⊢ ( 𝑔 ‘ 𝑘 ) ⊆ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
150 |
114
|
elpw |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ↔ ( 𝑔 ‘ 𝑘 ) ⊆ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
151 |
149 150
|
mpbir |
⊢ ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
152 |
151
|
rgenw |
⊢ ∀ 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
153 |
38
|
elixp |
⊢ ( 𝑔 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ↔ ( 𝑔 Fn dom 𝑔 ∧ ∀ 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) |
154 |
148 152 153
|
sylanblrc |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → 𝑔 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
155 |
79 146 154
|
rspcdva |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
156 |
40 42 54 55 56 57 155
|
dfac14lem |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
157 |
156
|
ex |
⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
158 |
157
|
alrimiv |
⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ∀ 𝑔 ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
159 |
|
dfac9 |
⊢ ( CHOICE ↔ ∀ 𝑔 ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
160 |
158 159
|
sylibr |
⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → CHOICE ) |
161 |
37 160
|
impbii |
⊢ ( CHOICE ↔ ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |