| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 2 |
1
|
unieqd |
⊢ ( 𝑘 = 𝑥 → ∪ ( 𝑓 ‘ 𝑘 ) = ∪ ( 𝑓 ‘ 𝑥 ) ) |
| 3 |
2
|
pweqd |
⊢ ( 𝑘 = 𝑥 → 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) |
| 4 |
3
|
cbvixpv |
⊢ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) |
| 5 |
4
|
eleq2i |
⊢ ( 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ↔ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) |
| 6 |
|
simplr |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑓 : dom 𝑓 ⟶ Top ) |
| 7 |
6
|
feqmptd |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑓 = ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
| 8 |
7
|
fveq2d |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ∏t ‘ 𝑓 ) = ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 9 |
8
|
fveq2d |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( cls ‘ ( ∏t ‘ 𝑓 ) ) = ( cls ‘ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
| 10 |
9
|
fveq1d |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) ) |
| 11 |
|
eqid |
⊢ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) = ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) |
| 12 |
|
vex |
⊢ 𝑓 ∈ V |
| 13 |
12
|
dmex |
⊢ dom 𝑓 ∈ V |
| 14 |
13
|
a1i |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → dom 𝑓 ∈ V ) |
| 15 |
6
|
ffvelcdmda |
⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑘 ) ∈ Top ) |
| 16 |
|
toptopon2 |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ Top ↔ ( 𝑓 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝑓 ‘ 𝑘 ) ) ) |
| 17 |
15 16
|
sylib |
⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝑓 ‘ 𝑘 ) ) ) |
| 18 |
|
simpr |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) |
| 19 |
18 5
|
sylibr |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 20 |
|
vex |
⊢ 𝑠 ∈ V |
| 21 |
20
|
elixp |
⊢ ( 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ↔ ( 𝑠 Fn dom 𝑓 ∧ ∀ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) ) |
| 22 |
21
|
simprbi |
⊢ ( 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) → ∀ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 23 |
19 22
|
syl |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 24 |
23
|
r19.21bi |
⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑠 ‘ 𝑘 ) ∈ 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 25 |
24
|
elpwid |
⊢ ( ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) ∧ 𝑘 ∈ dom 𝑓 ) → ( 𝑠 ‘ 𝑘 ) ⊆ ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 26 |
|
fvex |
⊢ ( 𝑠 ‘ 𝑘 ) ∈ V |
| 27 |
13 26
|
iunex |
⊢ ∪ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ V |
| 28 |
|
simpll |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → CHOICE ) |
| 29 |
|
acacni |
⊢ ( ( CHOICE ∧ dom 𝑓 ∈ V ) → AC dom 𝑓 = V ) |
| 30 |
28 13 29
|
sylancl |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → AC dom 𝑓 = V ) |
| 31 |
27 30
|
eleqtrrid |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ∪ 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ∈ AC dom 𝑓 ) |
| 32 |
11 14 17 25 31
|
ptclsg |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ( cls ‘ ( ∏t ‘ ( 𝑘 ∈ dom 𝑓 ↦ ( 𝑓 ‘ 𝑘 ) ) ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 33 |
10 32
|
eqtrd |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑥 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑥 ) ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 34 |
5 33
|
sylan2b |
⊢ ( ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) ∧ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 35 |
34
|
ralrimiva |
⊢ ( ( CHOICE ∧ 𝑓 : dom 𝑓 ⟶ Top ) → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 36 |
35
|
ex |
⊢ ( CHOICE → ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 37 |
36
|
alrimiv |
⊢ ( CHOICE → ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 38 |
|
vex |
⊢ 𝑔 ∈ V |
| 39 |
38
|
dmex |
⊢ dom 𝑔 ∈ V |
| 40 |
39
|
a1i |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → dom 𝑔 ∈ V ) |
| 41 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑥 ) ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ∈ V ) |
| 43 |
|
simplrr |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ∅ ∉ ran 𝑔 ) |
| 44 |
|
df-nel |
⊢ ( ∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔 ) |
| 45 |
43 44
|
sylib |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ¬ ∅ ∈ ran 𝑔 ) |
| 46 |
|
funforn |
⊢ ( Fun 𝑔 ↔ 𝑔 : dom 𝑔 –onto→ ran 𝑔 ) |
| 47 |
|
fof |
⊢ ( 𝑔 : dom 𝑔 –onto→ ran 𝑔 → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
| 48 |
46 47
|
sylbi |
⊢ ( Fun 𝑔 → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
| 49 |
48
|
ad2antrl |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → 𝑔 : dom 𝑔 ⟶ ran 𝑔 ) |
| 50 |
49
|
ffvelcdmda |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ) |
| 51 |
|
eleq1 |
⊢ ( ( 𝑔 ‘ 𝑥 ) = ∅ → ( ( 𝑔 ‘ 𝑥 ) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔 ) ) |
| 52 |
50 51
|
syl5ibcom |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( ( 𝑔 ‘ 𝑥 ) = ∅ → ∅ ∈ ran 𝑔 ) ) |
| 53 |
52
|
necon3bd |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( ¬ ∅ ∈ ran 𝑔 → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 54 |
45 53
|
mpd |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
| 55 |
|
eqid |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) |
| 56 |
|
eqid |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } |
| 57 |
|
eqid |
⊢ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) = ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) |
| 58 |
|
fveq1 |
⊢ ( 𝑠 = 𝑔 → ( 𝑠 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 59 |
58
|
ixpeq2dv |
⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) ) |
| 60 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 61 |
60
|
cbvixpv |
⊢ X 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) = X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) |
| 62 |
59 61
|
eqtrdi |
⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) = X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) |
| 63 |
62
|
fveq2d |
⊢ ( 𝑠 = 𝑔 → ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) ) |
| 64 |
58
|
fveq2d |
⊢ ( 𝑠 = 𝑔 → ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
| 65 |
64
|
ixpeq2dv |
⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) ) |
| 66 |
60
|
unieqd |
⊢ ( 𝑘 = 𝑥 → ∪ ( 𝑔 ‘ 𝑘 ) = ∪ ( 𝑔 ‘ 𝑥 ) ) |
| 67 |
66
|
pweqd |
⊢ ( 𝑘 = 𝑥 → 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ) |
| 68 |
67
|
sneqd |
⊢ ( 𝑘 = 𝑥 → { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } = { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) |
| 69 |
60 68
|
uneq12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) |
| 70 |
69
|
pweqd |
⊢ ( 𝑘 = 𝑥 → 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) = 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) |
| 71 |
67
|
eleq1d |
⊢ ( 𝑘 = 𝑥 → ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 ↔ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 ) ) |
| 72 |
69
|
eqeq2d |
⊢ ( 𝑘 = 𝑥 → ( 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ↔ 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ) |
| 73 |
71 72
|
imbi12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ↔ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ) ) |
| 74 |
70 73
|
rabeqbidv |
⊢ ( 𝑘 = 𝑥 → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) |
| 75 |
74
|
fveq2d |
⊢ ( 𝑘 = 𝑥 → ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) = ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) |
| 76 |
75 60
|
fveq12d |
⊢ ( 𝑘 = 𝑥 → ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) = ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 77 |
76
|
cbvixpv |
⊢ X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑘 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) |
| 78 |
65 77
|
eqtrdi |
⊢ ( 𝑠 = 𝑔 → X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 79 |
63 78
|
eqeq12d |
⊢ ( 𝑠 = 𝑔 → ( ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 80 |
|
simpl |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 81 |
|
snex |
⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ∈ V |
| 82 |
41 81
|
unex |
⊢ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∈ V |
| 83 |
|
ssun2 |
⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ⊆ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) |
| 84 |
41
|
uniex |
⊢ ∪ ( 𝑔 ‘ 𝑥 ) ∈ V |
| 85 |
84
|
pwex |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ V |
| 86 |
85
|
snid |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } |
| 87 |
83 86
|
sselii |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) |
| 88 |
|
epttop |
⊢ ( ( ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∈ V ∧ 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ) |
| 89 |
82 87 88
|
mp2an |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) |
| 90 |
89
|
topontopi |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ Top |
| 91 |
90
|
a1i |
⊢ ( ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) ∧ 𝑥 ∈ dom 𝑔 ) → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ Top ) |
| 92 |
91
|
fmpttd |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top ) |
| 93 |
39
|
mptex |
⊢ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∈ V |
| 94 |
|
id |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) |
| 95 |
|
dmeq |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → dom 𝑓 = dom ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) |
| 96 |
82
|
pwex |
⊢ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∈ V |
| 97 |
96
|
rabex |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ∈ V |
| 98 |
|
eqid |
⊢ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) |
| 99 |
97 98
|
dmmpti |
⊢ dom ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) = dom 𝑔 |
| 100 |
95 99
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → dom 𝑓 = dom 𝑔 ) |
| 101 |
94 100
|
feq12d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( 𝑓 : dom 𝑓 ⟶ Top ↔ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top ) ) |
| 102 |
100
|
ixpeq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ) |
| 103 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ 𝑘 ) ) |
| 104 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑘 ) ) |
| 105 |
104
|
unieqd |
⊢ ( 𝑥 = 𝑘 → ∪ ( 𝑔 ‘ 𝑥 ) = ∪ ( 𝑔 ‘ 𝑘 ) ) |
| 106 |
105
|
pweqd |
⊢ ( 𝑥 = 𝑘 → 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) = 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ) |
| 107 |
106
|
sneqd |
⊢ ( 𝑥 = 𝑘 → { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } = { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 108 |
104 107
|
uneq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 109 |
108
|
pweqd |
⊢ ( 𝑥 = 𝑘 → 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) = 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 110 |
106
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 ↔ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 ) ) |
| 111 |
108
|
eqeq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ↔ 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) |
| 112 |
110 111
|
imbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) ↔ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) ) |
| 113 |
109 112
|
rabeqbidv |
⊢ ( 𝑥 = 𝑘 → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
| 114 |
|
fvex |
⊢ ( 𝑔 ‘ 𝑘 ) ∈ V |
| 115 |
|
snex |
⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ∈ V |
| 116 |
114 115
|
unex |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∈ V |
| 117 |
116
|
pwex |
⊢ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∈ V |
| 118 |
117
|
rabex |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ∈ V |
| 119 |
113 98 118
|
fvmpt |
⊢ ( 𝑘 ∈ dom 𝑔 → ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ 𝑘 ) = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
| 120 |
103 119
|
sylan9eq |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ( 𝑓 ‘ 𝑘 ) = { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
| 121 |
120
|
unieqd |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ∪ ( 𝑓 ‘ 𝑘 ) = ∪ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) |
| 122 |
|
ssun2 |
⊢ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ⊆ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 123 |
114
|
uniex |
⊢ ∪ ( 𝑔 ‘ 𝑘 ) ∈ V |
| 124 |
123
|
pwex |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ V |
| 125 |
124
|
snid |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } |
| 126 |
122 125
|
sselii |
⊢ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 127 |
|
epttop |
⊢ ( ( ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∈ V ∧ 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) → { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) |
| 128 |
116 126 127
|
mp2an |
⊢ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ∈ ( TopOn ‘ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 129 |
128
|
toponunii |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) = ∪ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } |
| 130 |
121 129
|
eqtr4di |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ∪ ( 𝑓 ‘ 𝑘 ) = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 131 |
130
|
pweqd |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 132 |
131
|
ixpeq2dva |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑔 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 133 |
102 132
|
eqtrd |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 134 |
|
2fveq3 |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( cls ‘ ( ∏t ‘ 𝑓 ) ) = ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ) |
| 135 |
100
|
ixpeq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) = X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) |
| 136 |
134 135
|
fveq12d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) ) |
| 137 |
100
|
ixpeq1d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 138 |
120
|
fveq2d |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) = ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ) |
| 139 |
138
|
fveq1d |
⊢ ( ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ∧ 𝑘 ∈ dom 𝑔 ) → ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 140 |
139
|
ixpeq2dva |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑔 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 141 |
137 140
|
eqtrd |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 142 |
136 141
|
eqeq12d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 143 |
133 142
|
raleqbidv |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ↔ ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 144 |
101 143
|
imbi12d |
⊢ ( 𝑓 = ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) → ( ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ↔ ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) ) |
| 145 |
93 144
|
spcv |
⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) : dom 𝑔 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |
| 146 |
80 92 145
|
sylc |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑘 ∈ dom 𝑔 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) } ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) |
| 147 |
|
simprl |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → Fun 𝑔 ) |
| 148 |
147
|
funfnd |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → 𝑔 Fn dom 𝑔 ) |
| 149 |
|
ssun1 |
⊢ ( 𝑔 ‘ 𝑘 ) ⊆ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 150 |
114
|
elpw |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ↔ ( 𝑔 ‘ 𝑘 ) ⊆ ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 151 |
149 150
|
mpbir |
⊢ ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 152 |
151
|
rgenw |
⊢ ∀ 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) |
| 153 |
38
|
elixp |
⊢ ( 𝑔 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ↔ ( 𝑔 Fn dom 𝑔 ∧ ∀ 𝑘 ∈ dom 𝑔 ( 𝑔 ‘ 𝑘 ) ∈ 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) ) |
| 154 |
148 152 153
|
sylanblrc |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → 𝑔 ∈ X 𝑘 ∈ dom 𝑔 𝒫 ( ( 𝑔 ‘ 𝑘 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑘 ) } ) ) |
| 155 |
79 146 154
|
rspcdva |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → ( ( cls ‘ ( ∏t ‘ ( 𝑥 ∈ dom 𝑔 ↦ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ) ) ‘ X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ) = X 𝑥 ∈ dom 𝑔 ( ( cls ‘ { 𝑦 ∈ 𝒫 ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ∣ ( 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) ∈ 𝑦 → 𝑦 = ( ( 𝑔 ‘ 𝑥 ) ∪ { 𝒫 ∪ ( 𝑔 ‘ 𝑥 ) } ) ) } ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 156 |
40 42 54 55 56 57 155
|
dfac14lem |
⊢ ( ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ∧ ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) |
| 157 |
156
|
ex |
⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 158 |
157
|
alrimiv |
⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → ∀ 𝑔 ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 159 |
|
dfac9 |
⊢ ( CHOICE ↔ ∀ 𝑔 ( ( Fun 𝑔 ∧ ∅ ∉ ran 𝑔 ) → X 𝑥 ∈ dom 𝑔 ( 𝑔 ‘ 𝑥 ) ≠ ∅ ) ) |
| 160 |
158 159
|
sylibr |
⊢ ( ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) → CHOICE ) |
| 161 |
37 160
|
impbii |
⊢ ( CHOICE ↔ ∀ 𝑓 ( 𝑓 : dom 𝑓 ⟶ Top → ∀ 𝑠 ∈ X 𝑘 ∈ dom 𝑓 𝒫 ∪ ( 𝑓 ‘ 𝑘 ) ( ( cls ‘ ( ∏t ‘ 𝑓 ) ) ‘ X 𝑘 ∈ dom 𝑓 ( 𝑠 ‘ 𝑘 ) ) = X 𝑘 ∈ dom 𝑓 ( ( cls ‘ ( 𝑓 ‘ 𝑘 ) ) ‘ ( 𝑠 ‘ 𝑘 ) ) ) ) |