| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac14lem.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 2 |
|
dfac14lem.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑊 ) |
| 3 |
|
dfac14lem.0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ≠ ∅ ) |
| 4 |
|
dfac14lem.p |
⊢ 𝑃 = 𝒫 ∪ 𝑆 |
| 5 |
|
dfac14lem.r |
⊢ 𝑅 = { 𝑦 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∣ ( 𝑃 ∈ 𝑦 → 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ) } |
| 6 |
|
dfac14lem.j |
⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
| 7 |
|
dfac14lem.c |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑥 ∈ 𝐼 𝑆 ) = X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 8 |
|
eleq2w |
⊢ ( 𝑦 = 𝑧 → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑧 ) ) |
| 9 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ↔ 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 10 |
8 9
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 ∈ 𝑦 → 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ) ↔ ( 𝑃 ∈ 𝑧 → 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) ) ) |
| 11 |
10 5
|
elrab2 |
⊢ ( 𝑧 ∈ 𝑅 ↔ ( 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) ) ) |
| 12 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ) → 𝑆 ≠ ∅ ) |
| 13 |
|
ineq1 |
⊢ ( 𝑧 = ( 𝑆 ∪ { 𝑃 } ) → ( 𝑧 ∩ 𝑆 ) = ( ( 𝑆 ∪ { 𝑃 } ) ∩ 𝑆 ) ) |
| 14 |
|
ssun1 |
⊢ 𝑆 ⊆ ( 𝑆 ∪ { 𝑃 } ) |
| 15 |
|
sseqin2 |
⊢ ( 𝑆 ⊆ ( 𝑆 ∪ { 𝑃 } ) ↔ ( ( 𝑆 ∪ { 𝑃 } ) ∩ 𝑆 ) = 𝑆 ) |
| 16 |
14 15
|
mpbi |
⊢ ( ( 𝑆 ∪ { 𝑃 } ) ∩ 𝑆 ) = 𝑆 |
| 17 |
13 16
|
eqtrdi |
⊢ ( 𝑧 = ( 𝑆 ∪ { 𝑃 } ) → ( 𝑧 ∩ 𝑆 ) = 𝑆 ) |
| 18 |
17
|
neeq1d |
⊢ ( 𝑧 = ( 𝑆 ∪ { 𝑃 } ) → ( ( 𝑧 ∩ 𝑆 ) ≠ ∅ ↔ 𝑆 ≠ ∅ ) ) |
| 19 |
12 18
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ) → ( 𝑧 = ( 𝑆 ∪ { 𝑃 } ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 20 |
19
|
imim2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ) → ( ( 𝑃 ∈ 𝑧 → 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) → ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 21 |
20
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = ( 𝑆 ∪ { 𝑃 } ) ) ) → ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 22 |
11 21
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ∈ 𝑅 → ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 23 |
22
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑧 ∈ 𝑅 ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 24 |
|
snex |
⊢ { 𝑃 } ∈ V |
| 25 |
|
unexg |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ { 𝑃 } ∈ V ) → ( 𝑆 ∪ { 𝑃 } ) ∈ V ) |
| 26 |
2 24 25
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∪ { 𝑃 } ) ∈ V ) |
| 27 |
|
ssun2 |
⊢ { 𝑃 } ⊆ ( 𝑆 ∪ { 𝑃 } ) |
| 28 |
|
uniexg |
⊢ ( 𝑆 ∈ 𝑊 → ∪ 𝑆 ∈ V ) |
| 29 |
|
pwexg |
⊢ ( ∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆 ∈ V ) |
| 30 |
2 28 29
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ V ) |
| 31 |
4 30
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ V ) |
| 32 |
|
snidg |
⊢ ( 𝑃 ∈ V → 𝑃 ∈ { 𝑃 } ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ { 𝑃 } ) |
| 34 |
27 33
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ ( 𝑆 ∪ { 𝑃 } ) ) |
| 35 |
|
epttop |
⊢ ( ( ( 𝑆 ∪ { 𝑃 } ) ∈ V ∧ 𝑃 ∈ ( 𝑆 ∪ { 𝑃 } ) ) → { 𝑦 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∣ ( 𝑃 ∈ 𝑦 → 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ) } ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 36 |
26 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝑦 ∈ 𝒫 ( 𝑆 ∪ { 𝑃 } ) ∣ ( 𝑃 ∈ 𝑦 → 𝑦 = ( 𝑆 ∪ { 𝑃 } ) ) } ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 37 |
5 36
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 38 |
|
topontop |
⊢ ( 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) → 𝑅 ∈ Top ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Top ) |
| 40 |
|
toponuni |
⊢ ( 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) → ( 𝑆 ∪ { 𝑃 } ) = ∪ 𝑅 ) |
| 41 |
37 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∪ { 𝑃 } ) = ∪ 𝑅 ) |
| 42 |
14 41
|
sseqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ⊆ ∪ 𝑅 ) |
| 43 |
34 41
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ ∪ 𝑅 ) |
| 44 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
| 45 |
44
|
elcls |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ⊆ ∪ 𝑅 ∧ 𝑃 ∈ ∪ 𝑅 ) → ( 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑅 ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 46 |
39 42 43 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝑅 ( 𝑃 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 47 |
23 46
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 48 |
47
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 49 |
|
mptelixpg |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑃 ) ∈ X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐼 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ) |
| 50 |
1 49
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑃 ) ∈ X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝐼 𝑃 ∈ ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) ) |
| 51 |
48 50
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑃 ) ∈ X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 52 |
51
|
ne0d |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( ( cls ‘ 𝑅 ) ‘ 𝑆 ) ≠ ∅ ) |
| 53 |
37
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 54 |
6
|
pttopon |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐼 𝑅 ∈ ( TopOn ‘ ( 𝑆 ∪ { 𝑃 } ) ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 55 |
1 53 54
|
syl2anc |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( 𝑆 ∪ { 𝑃 } ) ) ) |
| 56 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐼 ( 𝑆 ∪ { 𝑃 } ) ) → 𝐽 ∈ Top ) |
| 57 |
|
cls0 |
⊢ ( 𝐽 ∈ Top → ( ( cls ‘ 𝐽 ) ‘ ∅ ) = ∅ ) |
| 58 |
55 56 57
|
3syl |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ∅ ) = ∅ ) |
| 59 |
52 7 58
|
3netr4d |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ X 𝑥 ∈ 𝐼 𝑆 ) ≠ ( ( cls ‘ 𝐽 ) ‘ ∅ ) ) |
| 60 |
|
fveq2 |
⊢ ( X 𝑥 ∈ 𝐼 𝑆 = ∅ → ( ( cls ‘ 𝐽 ) ‘ X 𝑥 ∈ 𝐼 𝑆 ) = ( ( cls ‘ 𝐽 ) ‘ ∅ ) ) |
| 61 |
60
|
necon3i |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ X 𝑥 ∈ 𝐼 𝑆 ) ≠ ( ( cls ‘ 𝐽 ) ‘ ∅ ) → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |
| 62 |
59 61
|
syl |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |