| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac3 |
⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 2 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) |
| 3 |
|
rsp |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 4 |
|
equid |
⊢ 𝑧 = 𝑧 |
| 5 |
|
neeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅ ) ) |
| 6 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = 𝑧 ↔ 𝑧 = 𝑧 ) ) |
| 7 |
5 6
|
anbi12d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) ↔ ( 𝑧 ≠ ∅ ∧ 𝑧 = 𝑧 ) ) ) |
| 8 |
7
|
rspcev |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ ( 𝑧 ≠ ∅ ∧ 𝑧 = 𝑧 ) ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) ) |
| 9 |
4 8
|
mpanr2 |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 11 |
10
|
preq1d |
⊢ ( 𝑢 = 𝑧 → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } = { ( 𝑓 ‘ 𝑧 ) , 𝑢 } ) |
| 12 |
|
preq2 |
⊢ ( 𝑢 = 𝑧 → { ( 𝑓 ‘ 𝑧 ) , 𝑢 } = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) |
| 13 |
11 12
|
eqtr2d |
⊢ ( 𝑢 = 𝑧 → { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) |
| 14 |
13
|
anim2i |
⊢ ( ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) → ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 15 |
14
|
reximi |
⊢ ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑢 = 𝑧 ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 16 |
9 15
|
syl |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 17 |
|
prex |
⊢ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ V |
| 18 |
|
eqeq1 |
⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 19 |
18
|
anbi2d |
⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 20 |
19
|
rexbidv |
⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 21 |
17 20
|
elab |
⊢ ( { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 22 |
16 21
|
sylibr |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ) |
| 23 |
|
vex |
⊢ 𝑧 ∈ V |
| 24 |
23
|
prid2 |
⊢ 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } |
| 25 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ V |
| 26 |
25
|
prid1 |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } |
| 27 |
24 26
|
pm3.2i |
⊢ ( 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) |
| 28 |
|
eleq2 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) |
| 29 |
|
eleq2 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ↔ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) |
| 30 |
28 29
|
anbi12d |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑧 ) , 𝑧 } → ( ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ↔ ( 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) ) |
| 31 |
30
|
rspcev |
⊢ ( ( { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ∧ ( 𝑓 ‘ 𝑧 ) ∈ { ( 𝑓 ‘ 𝑧 ) , 𝑧 } ) ) → ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) |
| 32 |
22 27 31
|
sylancl |
⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) |
| 33 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( 𝑤 ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 34 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( 𝑤 ∈ 𝑣 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) |
| 35 |
34
|
anbi2d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) ) |
| 36 |
35
|
rexbidv |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) ) |
| 37 |
33 36
|
anbi12d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) ) ) |
| 38 |
25 37
|
spcev |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑣 ) ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 39 |
32 38
|
sylan2 |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 40 |
39
|
ex |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 41 |
3 40
|
syl8 |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) ) |
| 42 |
41
|
impd |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) |
| 43 |
42
|
pm2.43d |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 44 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 45 |
|
vex |
⊢ 𝑣 ∈ V |
| 46 |
|
eqeq1 |
⊢ ( 𝑔 = 𝑣 → ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 47 |
46
|
anbi2d |
⊢ ( 𝑔 = 𝑣 → ( ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 48 |
47
|
rexbidv |
⊢ ( 𝑔 = 𝑣 → ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 49 |
45 48
|
elab |
⊢ ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ↔ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 50 |
|
neeq1 |
⊢ ( 𝑧 = 𝑢 → ( 𝑧 ≠ ∅ ↔ 𝑢 ≠ ∅ ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑢 ) ) |
| 52 |
51
|
eleq1d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑢 ) ∈ 𝑧 ) ) |
| 53 |
|
eleq2 |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) |
| 54 |
52 53
|
bitrd |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) |
| 55 |
50 54
|
imbi12d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑢 ≠ ∅ → ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) ) |
| 56 |
55
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) ) |
| 57 |
|
elneq |
⊢ ( 𝑤 ∈ 𝑧 → 𝑤 ≠ 𝑧 ) |
| 58 |
57
|
neneqd |
⊢ ( 𝑤 ∈ 𝑧 → ¬ 𝑤 = 𝑧 ) |
| 59 |
|
vex |
⊢ 𝑤 ∈ V |
| 60 |
|
neqne |
⊢ ( ¬ 𝑤 = 𝑧 → 𝑤 ≠ 𝑧 ) |
| 61 |
|
prel12g |
⊢ ( ( 𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑤 ≠ 𝑧 ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 62 |
59 23 60 61
|
mp3an12i |
⊢ ( ¬ 𝑤 = 𝑧 → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 63 |
|
eleq2 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 64 |
|
eleq2 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) |
| 65 |
63 64
|
anbi12d |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ↔ ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ) ) |
| 66 |
|
ancom |
⊢ ( ( 𝑤 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 67 |
65 66
|
bitr3di |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑤 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑧 ∈ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 68 |
62 67
|
sylan9bbr |
⊢ ( ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ ¬ 𝑤 = 𝑧 ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 69 |
58 68
|
sylan2 |
⊢ ( ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ 𝑤 ∈ 𝑧 ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 70 |
69
|
adantrr |
⊢ ( ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∧ ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ) → ( { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 71 |
70
|
pm5.32da |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) ↔ ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 72 |
23
|
preleq |
⊢ ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ { 𝑤 , 𝑧 } = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( 𝑤 = ( 𝑓 ‘ 𝑢 ) ∧ 𝑧 = 𝑢 ) ) |
| 73 |
71 72
|
biimtrrdi |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → ( 𝑤 = ( 𝑓 ‘ 𝑢 ) ∧ 𝑧 = 𝑢 ) ) ) |
| 74 |
51
|
eqeq2d |
⊢ ( 𝑧 = 𝑢 → ( 𝑤 = ( 𝑓 ‘ 𝑧 ) ↔ 𝑤 = ( 𝑓 ‘ 𝑢 ) ) ) |
| 75 |
74
|
biimparc |
⊢ ( ( 𝑤 = ( 𝑓 ‘ 𝑢 ) ∧ 𝑧 = 𝑢 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) |
| 76 |
73 75
|
syl6 |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( ( 𝑤 ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 ) ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 77 |
76
|
exp4c |
⊢ ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑤 ∈ 𝑧 → ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 78 |
77
|
com13 |
⊢ ( ( 𝑓 ‘ 𝑢 ) ∈ 𝑢 → ( 𝑤 ∈ 𝑧 → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 79 |
56 78
|
syl8 |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑤 ∈ 𝑧 → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) ) |
| 80 |
79
|
com4r |
⊢ ( 𝑤 ∈ 𝑧 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) ) |
| 81 |
80
|
imp |
⊢ ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑢 ∈ 𝑥 → ( 𝑢 ≠ ∅ → ( 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) ) |
| 82 |
81
|
imp4a |
⊢ ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑢 ∈ 𝑥 → ( ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 83 |
82
|
com3l |
⊢ ( 𝑢 ∈ 𝑥 → ( ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 84 |
83
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑣 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 85 |
49 84
|
sylbi |
⊢ ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ( 𝑤 ∈ 𝑧 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 86 |
85
|
expd |
⊢ ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( 𝑤 ∈ 𝑧 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 87 |
86
|
com13 |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑤 ∈ 𝑧 → ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 88 |
87
|
imp4b |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ 𝑧 ) → ( ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 89 |
88
|
exlimdv |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ 𝑧 ) → ( ∃ 𝑣 ( 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∧ ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 90 |
44 89
|
biimtrid |
⊢ ( ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ 𝑧 ) → ( ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 91 |
90
|
expimpd |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 92 |
91
|
alrimiv |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑤 ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 93 |
|
mo2icl |
⊢ ( ∀ 𝑤 ( ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → 𝑤 = ( 𝑓 ‘ 𝑧 ) ) → ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 94 |
92 93
|
syl |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 95 |
43 94
|
jctird |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ∧ ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) |
| 96 |
|
df-reu |
⊢ ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃! 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 97 |
|
df-eu |
⊢ ( ∃! 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ∧ ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 98 |
96 97
|
bitri |
⊢ ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ∧ ∃* 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 99 |
95 98
|
imbitrrdi |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ≠ ∅ ) → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 100 |
99
|
expd |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 101 |
2 100
|
ralrimi |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 102 |
|
vex |
⊢ 𝑓 ∈ V |
| 103 |
102
|
rnex |
⊢ ran 𝑓 ∈ V |
| 104 |
|
p0ex |
⊢ { ∅ } ∈ V |
| 105 |
103 104
|
unex |
⊢ ( ran 𝑓 ∪ { ∅ } ) ∈ V |
| 106 |
|
vex |
⊢ 𝑥 ∈ V |
| 107 |
105 106
|
unex |
⊢ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ∈ V |
| 108 |
107
|
pwex |
⊢ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ∈ V |
| 109 |
|
ssun1 |
⊢ ( ran 𝑓 ∪ { ∅ } ) ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) |
| 110 |
|
fvrn0 |
⊢ ( 𝑓 ‘ 𝑢 ) ∈ ( ran 𝑓 ∪ { ∅ } ) |
| 111 |
109 110
|
sselii |
⊢ ( 𝑓 ‘ 𝑢 ) ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) |
| 112 |
|
elun2 |
⊢ ( 𝑢 ∈ 𝑥 → 𝑢 ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 113 |
|
prssi |
⊢ ( ( ( 𝑓 ‘ 𝑢 ) ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ∧ 𝑢 ∈ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 114 |
111 112 113
|
sylancr |
⊢ ( 𝑢 ∈ 𝑥 → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 115 |
|
prex |
⊢ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ V |
| 116 |
115
|
elpw |
⊢ ( { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ↔ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ⊆ ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 117 |
114 116
|
sylibr |
⊢ ( 𝑢 ∈ 𝑥 → { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 118 |
|
eleq1 |
⊢ ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → ( 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ↔ { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) ) |
| 119 |
117 118
|
syl5ibrcom |
⊢ ( 𝑢 ∈ 𝑥 → ( 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } → 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) ) |
| 120 |
119
|
adantld |
⊢ ( 𝑢 ∈ 𝑥 → ( ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) ) |
| 121 |
120
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) → 𝑔 ∈ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) ) |
| 122 |
121
|
abssi |
⊢ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ⊆ 𝒫 ( ( ran 𝑓 ∪ { ∅ } ) ∪ 𝑥 ) |
| 123 |
108 122
|
ssexi |
⊢ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ∈ V |
| 124 |
|
rexeq |
⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 125 |
124
|
reubidv |
⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 126 |
125
|
imbi2d |
⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 127 |
126
|
ralbidv |
⊢ ( 𝑦 = { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 128 |
123 127
|
spcev |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ { 𝑔 ∣ ∃ 𝑢 ∈ 𝑥 ( 𝑢 ≠ ∅ ∧ 𝑔 = { ( 𝑓 ‘ 𝑢 ) , 𝑢 } ) } ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 129 |
101 128
|
syl |
⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 130 |
129
|
exlimiv |
⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 131 |
130
|
alimi |
⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 132 |
1 131
|
sylbi |
⊢ ( CHOICE → ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |