| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfac4 |
⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) ) |
| 2 |
|
neeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅ ) ) |
| 3 |
2
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑤 ∈ 𝑥 𝑤 ≠ ∅ ) |
| 4 |
3
|
anbi2i |
⊢ ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) ↔ ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝑥 𝑤 ≠ ∅ ) ) |
| 5 |
|
r19.26 |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) ↔ ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝑥 𝑤 ≠ ∅ ) ) |
| 6 |
4 5
|
bitr4i |
⊢ ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) ↔ ∀ 𝑤 ∈ 𝑥 ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) ) |
| 7 |
|
pm3.35 |
⊢ ( ( 𝑤 ≠ ∅ ∧ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
| 8 |
7
|
ancoms |
⊢ ( ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
| 9 |
8
|
ralimi |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) → ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
| 10 |
6 9
|
sylbi |
⊢ ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) → ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
| 11 |
|
r19.26 |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 12 |
|
elin |
⊢ ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓 ) ) |
| 13 |
|
fvelrnb |
⊢ ( 𝑓 Fn 𝑥 → ( 𝑣 ∈ ran 𝑓 ↔ ∃ 𝑡 ∈ 𝑥 ( 𝑓 ‘ 𝑡 ) = 𝑣 ) ) |
| 14 |
13
|
biimpac |
⊢ ( ( 𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥 ) → ∃ 𝑡 ∈ 𝑥 ( 𝑓 ‘ 𝑡 ) = 𝑣 ) |
| 15 |
|
fveq2 |
⊢ ( 𝑤 = 𝑡 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑡 ) ) |
| 16 |
|
id |
⊢ ( 𝑤 = 𝑡 → 𝑤 = 𝑡 ) |
| 17 |
15 16
|
eleq12d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ↔ ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ) ) |
| 18 |
|
neeq2 |
⊢ ( 𝑤 = 𝑡 → ( 𝑧 ≠ 𝑤 ↔ 𝑧 ≠ 𝑡 ) ) |
| 19 |
|
ineq2 |
⊢ ( 𝑤 = 𝑡 → ( 𝑧 ∩ 𝑤 ) = ( 𝑧 ∩ 𝑡 ) ) |
| 20 |
19
|
eqeq1d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( 𝑧 ∩ 𝑡 ) = ∅ ) ) |
| 21 |
18 20
|
imbi12d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ) |
| 22 |
17 21
|
anbi12d |
⊢ ( 𝑤 = 𝑡 → ( ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ) ) |
| 23 |
22
|
rspcv |
⊢ ( 𝑡 ∈ 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ) ) |
| 24 |
|
minel |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ∩ 𝑡 ) = ∅ ) → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) |
| 25 |
24
|
ex |
⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 → ( ( 𝑧 ∩ 𝑡 ) = ∅ → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) ) |
| 26 |
25
|
imim2d |
⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 → ( ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) → ( 𝑧 ≠ 𝑡 → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) ) ) |
| 27 |
26
|
imp |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) → ( 𝑧 ≠ 𝑡 → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) ) |
| 28 |
27
|
necon4ad |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 → 𝑧 = 𝑡 ) ) |
| 29 |
|
eleq1 |
⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ) |
| 30 |
29
|
biimpar |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) → ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) |
| 31 |
28 30
|
impel |
⊢ ( ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ∧ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) ) → 𝑧 = 𝑡 ) |
| 32 |
|
fveq2 |
⊢ ( 𝑧 = 𝑡 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑡 ) ) |
| 33 |
|
eqeq2 |
⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑡 ) ↔ ( 𝑓 ‘ 𝑧 ) = 𝑣 ) ) |
| 34 |
|
eqcom |
⊢ ( ( 𝑓 ‘ 𝑧 ) = 𝑣 ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) |
| 35 |
33 34
|
bitrdi |
⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑡 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 36 |
32 35
|
imbitrid |
⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( 𝑧 = 𝑡 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 37 |
36
|
ad2antrl |
⊢ ( ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ∧ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) ) → ( 𝑧 = 𝑡 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 38 |
31 37
|
mpd |
⊢ ( ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ∧ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) |
| 39 |
38
|
exp32 |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) → ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( 𝑣 ∈ 𝑧 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 40 |
23 39
|
syl6com |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑡 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( 𝑣 ∈ 𝑧 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 41 |
40
|
com14 |
⊢ ( 𝑣 ∈ 𝑧 → ( 𝑡 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 42 |
41
|
rexlimdv |
⊢ ( 𝑣 ∈ 𝑧 → ( ∃ 𝑡 ∈ 𝑥 ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 43 |
14 42
|
syl5 |
⊢ ( 𝑣 ∈ 𝑧 → ( ( 𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 44 |
43
|
expd |
⊢ ( 𝑣 ∈ 𝑧 → ( 𝑣 ∈ ran 𝑓 → ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 45 |
44
|
com4t |
⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ 𝑧 → ( 𝑣 ∈ ran 𝑓 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
| 46 |
45
|
imp4b |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 47 |
12 46
|
biimtrid |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 48 |
11 47
|
sylan2br |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 49 |
48
|
anassrs |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 50 |
49
|
adantlr |
⊢ ( ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 52 |
|
id |
⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) |
| 53 |
51 52
|
eleq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 54 |
53
|
rspcv |
⊢ ( 𝑧 ∈ 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 55 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) |
| 56 |
55
|
expcom |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑓 Fn 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) ) |
| 57 |
54 56
|
anim12d |
⊢ ( 𝑧 ∈ 𝑥 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ 𝑓 Fn 𝑥 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) ) ) |
| 58 |
|
elin |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) ) |
| 59 |
57 58
|
imbitrrdi |
⊢ ( 𝑧 ∈ 𝑥 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ 𝑓 Fn 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 60 |
59
|
expd |
⊢ ( 𝑧 ∈ 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( 𝑓 Fn 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
| 61 |
60
|
com13 |
⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( 𝑧 ∈ 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
| 62 |
61
|
imp31 |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) |
| 63 |
|
eleq1 |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝑧 ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 64 |
62 63
|
syl5ibrcom |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑣 = ( 𝑓 ‘ 𝑧 ) → 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 = ( 𝑓 ‘ 𝑧 ) → 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 66 |
50 65
|
impbid |
⊢ ( ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 67 |
66
|
ex |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 68 |
67
|
alrimdv |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 69 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ V |
| 70 |
|
eqeq2 |
⊢ ( ℎ = ( 𝑓 ‘ 𝑧 ) → ( 𝑣 = ℎ ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 71 |
70
|
bibi2d |
⊢ ( ℎ = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ↔ ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 72 |
71
|
albidv |
⊢ ( ℎ = ( 𝑓 ‘ 𝑧 ) → ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ↔ ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 73 |
69 72
|
spcev |
⊢ ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) → ∃ ℎ ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ) |
| 74 |
|
eu6 |
⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ∃ ℎ ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ) |
| 75 |
73 74
|
sylibr |
⊢ ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) |
| 76 |
68 75
|
syl6 |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 77 |
76
|
ralimdva |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 78 |
77
|
ex |
⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
| 79 |
10 78
|
syl5 |
⊢ ( 𝑓 Fn 𝑥 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
| 80 |
79
|
expd |
⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) ) |
| 81 |
80
|
imp4b |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 82 |
|
vex |
⊢ 𝑓 ∈ V |
| 83 |
82
|
rnex |
⊢ ran 𝑓 ∈ V |
| 84 |
|
ineq2 |
⊢ ( 𝑦 = ran 𝑓 → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ ran 𝑓 ) ) |
| 85 |
84
|
eleq2d |
⊢ ( 𝑦 = ran 𝑓 → ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 86 |
85
|
eubidv |
⊢ ( 𝑦 = ran 𝑓 → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 87 |
86
|
ralbidv |
⊢ ( 𝑦 = ran 𝑓 → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
| 88 |
83 87
|
spcev |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
| 89 |
81 88
|
syl6 |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 90 |
89
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 91 |
90
|
alimi |
⊢ ( ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 92 |
1 91
|
sylbi |
⊢ ( CHOICE → ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 93 |
|
eqid |
⊢ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } |
| 94 |
|
biid |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
| 95 |
|
eqid |
⊢ ( ∪ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∩ 𝑦 ) = ( ∪ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∩ 𝑦 ) |
| 96 |
93 94 95
|
dfac5lem5 |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 97 |
96
|
alrimiv |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∀ ℎ ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 98 |
|
dfac3 |
⊢ ( CHOICE ↔ ∀ ℎ ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 99 |
97 98
|
sylibr |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → CHOICE ) |
| 100 |
92 99
|
impbii |
⊢ ( CHOICE ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |