Step |
Hyp |
Ref |
Expression |
1 |
|
dfac4 |
⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) ) |
2 |
|
neeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅ ) ) |
3 |
2
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑤 ∈ 𝑥 𝑤 ≠ ∅ ) |
4 |
3
|
anbi2i |
⊢ ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) ↔ ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝑥 𝑤 ≠ ∅ ) ) |
5 |
|
r19.26 |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) ↔ ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝑥 𝑤 ≠ ∅ ) ) |
6 |
4 5
|
bitr4i |
⊢ ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) ↔ ∀ 𝑤 ∈ 𝑥 ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) ) |
7 |
|
pm3.35 |
⊢ ( ( 𝑤 ≠ ∅ ∧ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
8 |
7
|
ancoms |
⊢ ( ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
9 |
8
|
ralimi |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑤 ≠ ∅ ) → ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
10 |
6 9
|
sylbi |
⊢ ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) → ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
11 |
|
r19.26 |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
12 |
|
elin |
⊢ ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓 ) ) |
13 |
|
fvelrnb |
⊢ ( 𝑓 Fn 𝑥 → ( 𝑣 ∈ ran 𝑓 ↔ ∃ 𝑡 ∈ 𝑥 ( 𝑓 ‘ 𝑡 ) = 𝑣 ) ) |
14 |
13
|
biimpac |
⊢ ( ( 𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥 ) → ∃ 𝑡 ∈ 𝑥 ( 𝑓 ‘ 𝑡 ) = 𝑣 ) |
15 |
|
fveq2 |
⊢ ( 𝑤 = 𝑡 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑡 ) ) |
16 |
|
id |
⊢ ( 𝑤 = 𝑡 → 𝑤 = 𝑡 ) |
17 |
15 16
|
eleq12d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ↔ ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ) ) |
18 |
|
neeq2 |
⊢ ( 𝑤 = 𝑡 → ( 𝑧 ≠ 𝑤 ↔ 𝑧 ≠ 𝑡 ) ) |
19 |
|
ineq2 |
⊢ ( 𝑤 = 𝑡 → ( 𝑧 ∩ 𝑤 ) = ( 𝑧 ∩ 𝑡 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( 𝑧 ∩ 𝑡 ) = ∅ ) ) |
21 |
18 20
|
imbi12d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ) |
22 |
17 21
|
anbi12d |
⊢ ( 𝑤 = 𝑡 → ( ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ) ) |
23 |
22
|
rspcv |
⊢ ( 𝑡 ∈ 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ) ) |
24 |
|
minel |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ∩ 𝑡 ) = ∅ ) → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) |
25 |
24
|
ex |
⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 → ( ( 𝑧 ∩ 𝑡 ) = ∅ → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) ) |
26 |
25
|
imim2d |
⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 → ( ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) → ( 𝑧 ≠ 𝑡 → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) ) ) |
27 |
26
|
imp |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) → ( 𝑧 ≠ 𝑡 → ¬ ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) ) |
28 |
27
|
necon4ad |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 → 𝑧 = 𝑡 ) ) |
29 |
|
eleq1 |
⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ) |
30 |
29
|
biimpar |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) → ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) |
31 |
28 30
|
impel |
⊢ ( ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ∧ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) ) → 𝑧 = 𝑡 ) |
32 |
|
fveq2 |
⊢ ( 𝑧 = 𝑡 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑡 ) ) |
33 |
|
eqeq2 |
⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑡 ) ↔ ( 𝑓 ‘ 𝑧 ) = 𝑣 ) ) |
34 |
|
eqcom |
⊢ ( ( 𝑓 ‘ 𝑧 ) = 𝑣 ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) |
35 |
33 34
|
bitrdi |
⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑡 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
36 |
32 35
|
syl5ib |
⊢ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( 𝑧 = 𝑡 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
37 |
36
|
ad2antrl |
⊢ ( ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ∧ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) ) → ( 𝑧 = 𝑡 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
38 |
31 37
|
mpd |
⊢ ( ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) ∧ ( ( 𝑓 ‘ 𝑡 ) = 𝑣 ∧ 𝑣 ∈ 𝑧 ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) |
39 |
38
|
exp32 |
⊢ ( ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑡 ∧ ( 𝑧 ≠ 𝑡 → ( 𝑧 ∩ 𝑡 ) = ∅ ) ) → ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( 𝑣 ∈ 𝑧 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
40 |
23 39
|
syl6com |
⊢ ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑡 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( 𝑣 ∈ 𝑧 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
41 |
40
|
com14 |
⊢ ( 𝑣 ∈ 𝑧 → ( 𝑡 ∈ 𝑥 → ( ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
42 |
41
|
rexlimdv |
⊢ ( 𝑣 ∈ 𝑧 → ( ∃ 𝑡 ∈ 𝑥 ( 𝑓 ‘ 𝑡 ) = 𝑣 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
43 |
14 42
|
syl5 |
⊢ ( 𝑣 ∈ 𝑧 → ( ( 𝑣 ∈ ran 𝑓 ∧ 𝑓 Fn 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
44 |
43
|
expd |
⊢ ( 𝑣 ∈ 𝑧 → ( 𝑣 ∈ ran 𝑓 → ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
45 |
44
|
com4t |
⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ 𝑧 → ( 𝑣 ∈ ran 𝑓 → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) ) |
46 |
45
|
imp4b |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
47 |
12 46
|
syl5bi |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
48 |
11 47
|
sylan2br |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
49 |
48
|
anassrs |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
50 |
49
|
adantlr |
⊢ ( ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
51 |
|
fveq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑓 ‘ 𝑤 ) = ( 𝑓 ‘ 𝑧 ) ) |
52 |
|
id |
⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) |
53 |
51 52
|
eleq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ↔ ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
54 |
53
|
rspcv |
⊢ ( 𝑧 ∈ 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
55 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) |
56 |
55
|
expcom |
⊢ ( 𝑧 ∈ 𝑥 → ( 𝑓 Fn 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) ) |
57 |
54 56
|
anim12d |
⊢ ( 𝑧 ∈ 𝑥 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ 𝑓 Fn 𝑥 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) ) ) |
58 |
|
elin |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ∧ ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) ) |
59 |
57 58
|
syl6ibr |
⊢ ( 𝑧 ∈ 𝑥 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ∧ 𝑓 Fn 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
60 |
59
|
expd |
⊢ ( 𝑧 ∈ 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( 𝑓 Fn 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
61 |
60
|
com13 |
⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( 𝑧 ∈ 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
62 |
61
|
imp31 |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) |
63 |
|
eleq1 |
⊢ ( 𝑣 = ( 𝑓 ‘ 𝑧 ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
64 |
62 63
|
syl5ibrcom |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑣 = ( 𝑓 ‘ 𝑧 ) → 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
65 |
64
|
adantr |
⊢ ( ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 = ( 𝑓 ‘ 𝑧 ) → 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
66 |
50 65
|
impbid |
⊢ ( ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
67 |
66
|
ex |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
68 |
67
|
alrimdv |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
69 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ V |
70 |
|
eqeq2 |
⊢ ( ℎ = ( 𝑓 ‘ 𝑧 ) → ( 𝑣 = ℎ ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) |
71 |
70
|
bibi2d |
⊢ ( ℎ = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ↔ ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
72 |
71
|
albidv |
⊢ ( ℎ = ( 𝑓 ‘ 𝑧 ) → ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ↔ ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) ) ) |
73 |
69 72
|
spcev |
⊢ ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) → ∃ ℎ ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ) |
74 |
|
eu6 |
⊢ ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ ∃ ℎ ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ℎ ) ) |
75 |
73 74
|
sylibr |
⊢ ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ↔ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) |
76 |
68 75
|
syl6 |
⊢ ( ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ 𝑧 ∈ 𝑥 ) → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
77 |
76
|
ralimdva |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
78 |
77
|
ex |
⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
79 |
10 78
|
syl5 |
⊢ ( 𝑓 Fn 𝑥 → ( ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) |
80 |
79
|
expd |
⊢ ( 𝑓 Fn 𝑥 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) ) ) |
81 |
80
|
imp4b |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
82 |
|
vex |
⊢ 𝑓 ∈ V |
83 |
82
|
rnex |
⊢ ran 𝑓 ∈ V |
84 |
|
ineq2 |
⊢ ( 𝑦 = ran 𝑓 → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ ran 𝑓 ) ) |
85 |
84
|
eleq2d |
⊢ ( 𝑦 = ran 𝑓 → ( 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
86 |
85
|
eubidv |
⊢ ( 𝑦 = ran 𝑓 → ( ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
87 |
86
|
ralbidv |
⊢ ( 𝑦 = ran 𝑓 → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) ) ) |
88 |
83 87
|
spcev |
⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ ran 𝑓 ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |
89 |
81 88
|
syl6 |
⊢ ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
90 |
89
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
91 |
90
|
alimi |
⊢ ( ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) → ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
92 |
1 91
|
sylbi |
⊢ ( CHOICE → ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
93 |
|
eqid |
⊢ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } |
94 |
|
eqid |
⊢ ( ∪ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∩ 𝑦 ) = ( ∪ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∩ 𝑦 ) |
95 |
|
biid |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
96 |
93 94 95
|
dfac5lem5 |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
97 |
96
|
alrimiv |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∀ ℎ ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
98 |
|
dfac3 |
⊢ ( CHOICE ↔ ∀ ℎ ∃ 𝑓 ∀ 𝑤 ∈ ℎ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
99 |
97 98
|
sylibr |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → CHOICE ) |
100 |
92 99
|
impbii |
⊢ ( CHOICE ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |