| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfac5lem.1 | ⊢ 𝐴  =  { 𝑢  ∣  ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) ) } | 
						
							| 2 |  | vsnex | ⊢ { 𝑤 }  ∈  V | 
						
							| 3 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 4 | 2 3 | xpex | ⊢ ( { 𝑤 }  ×  𝑤 )  ∈  V | 
						
							| 5 |  | neeq1 | ⊢ ( 𝑢  =  ( { 𝑤 }  ×  𝑤 )  →  ( 𝑢  ≠  ∅  ↔  ( { 𝑤 }  ×  𝑤 )  ≠  ∅ ) ) | 
						
							| 6 |  | eqeq1 | ⊢ ( 𝑢  =  ( { 𝑤 }  ×  𝑤 )  →  ( 𝑢  =  ( { 𝑡 }  ×  𝑡 )  ↔  ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑢  =  ( { 𝑤 }  ×  𝑤 )  →  ( ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 )  ↔  ∃ 𝑡  ∈  ℎ ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 8 | 5 7 | anbi12d | ⊢ ( 𝑢  =  ( { 𝑤 }  ×  𝑤 )  →  ( ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) )  ↔  ( ( { 𝑤 }  ×  𝑤 )  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) ) ) ) | 
						
							| 9 | 4 8 | elab | ⊢ ( ( { 𝑤 }  ×  𝑤 )  ∈  { 𝑢  ∣  ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) ) }  ↔  ( ( { 𝑤 }  ×  𝑤 )  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 10 | 1 | eleq2i | ⊢ ( ( { 𝑤 }  ×  𝑤 )  ∈  𝐴  ↔  ( { 𝑤 }  ×  𝑤 )  ∈  { 𝑢  ∣  ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) ) } ) | 
						
							| 11 |  | xpeq2 | ⊢ ( 𝑤  =  ∅  →  ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑤 }  ×  ∅ ) ) | 
						
							| 12 |  | xp0 | ⊢ ( { 𝑤 }  ×  ∅ )  =  ∅ | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( { 𝑤 }  ×  𝑤 )  =  ∅ ) | 
						
							| 14 |  | rneq | ⊢ ( ( { 𝑤 }  ×  𝑤 )  =  ∅  →  ran  ( { 𝑤 }  ×  𝑤 )  =  ran  ∅ ) | 
						
							| 15 | 3 | snnz | ⊢ { 𝑤 }  ≠  ∅ | 
						
							| 16 |  | rnxp | ⊢ ( { 𝑤 }  ≠  ∅  →  ran  ( { 𝑤 }  ×  𝑤 )  =  𝑤 ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ran  ( { 𝑤 }  ×  𝑤 )  =  𝑤 | 
						
							| 18 |  | rn0 | ⊢ ran  ∅  =  ∅ | 
						
							| 19 | 14 17 18 | 3eqtr3g | ⊢ ( ( { 𝑤 }  ×  𝑤 )  =  ∅  →  𝑤  =  ∅ ) | 
						
							| 20 | 13 19 | impbii | ⊢ ( 𝑤  =  ∅  ↔  ( { 𝑤 }  ×  𝑤 )  =  ∅ ) | 
						
							| 21 | 20 | necon3bii | ⊢ ( 𝑤  ≠  ∅  ↔  ( { 𝑤 }  ×  𝑤 )  ≠  ∅ ) | 
						
							| 22 |  | df-rex | ⊢ ( ∃ 𝑡  ∈  ℎ ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 )  ↔  ∃ 𝑡 ( 𝑡  ∈  ℎ  ∧  ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 23 |  | rneq | ⊢ ( ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 )  →  ran  ( { 𝑤 }  ×  𝑤 )  =  ran  ( { 𝑡 }  ×  𝑡 ) ) | 
						
							| 24 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 25 | 24 | snnz | ⊢ { 𝑡 }  ≠  ∅ | 
						
							| 26 |  | rnxp | ⊢ ( { 𝑡 }  ≠  ∅  →  ran  ( { 𝑡 }  ×  𝑡 )  =  𝑡 ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ ran  ( { 𝑡 }  ×  𝑡 )  =  𝑡 | 
						
							| 28 | 23 17 27 | 3eqtr3g | ⊢ ( ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 )  →  𝑤  =  𝑡 ) | 
						
							| 29 |  | sneq | ⊢ ( 𝑤  =  𝑡  →  { 𝑤 }  =  { 𝑡 } ) | 
						
							| 30 | 29 | xpeq1d | ⊢ ( 𝑤  =  𝑡  →  ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑤 ) ) | 
						
							| 31 |  | xpeq2 | ⊢ ( 𝑤  =  𝑡  →  ( { 𝑡 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) ) | 
						
							| 32 | 30 31 | eqtrd | ⊢ ( 𝑤  =  𝑡  →  ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) ) | 
						
							| 33 | 28 32 | impbii | ⊢ ( ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 )  ↔  𝑤  =  𝑡 ) | 
						
							| 34 |  | equcom | ⊢ ( 𝑤  =  𝑡  ↔  𝑡  =  𝑤 ) | 
						
							| 35 | 33 34 | bitri | ⊢ ( ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 )  ↔  𝑡  =  𝑤 ) | 
						
							| 36 | 35 | anbi1ci | ⊢ ( ( 𝑡  ∈  ℎ  ∧  ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) )  ↔  ( 𝑡  =  𝑤  ∧  𝑡  ∈  ℎ ) ) | 
						
							| 37 | 36 | exbii | ⊢ ( ∃ 𝑡 ( 𝑡  ∈  ℎ  ∧  ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) )  ↔  ∃ 𝑡 ( 𝑡  =  𝑤  ∧  𝑡  ∈  ℎ ) ) | 
						
							| 38 |  | elequ1 | ⊢ ( 𝑡  =  𝑤  →  ( 𝑡  ∈  ℎ  ↔  𝑤  ∈  ℎ ) ) | 
						
							| 39 | 38 | equsexvw | ⊢ ( ∃ 𝑡 ( 𝑡  =  𝑤  ∧  𝑡  ∈  ℎ )  ↔  𝑤  ∈  ℎ ) | 
						
							| 40 | 22 37 39 | 3bitrri | ⊢ ( 𝑤  ∈  ℎ  ↔  ∃ 𝑡  ∈  ℎ ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) ) | 
						
							| 41 | 21 40 | anbi12i | ⊢ ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  ℎ )  ↔  ( ( { 𝑤 }  ×  𝑤 )  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ ( { 𝑤 }  ×  𝑤 )  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 42 | 9 10 41 | 3bitr4i | ⊢ ( ( { 𝑤 }  ×  𝑤 )  ∈  𝐴  ↔  ( 𝑤  ≠  ∅  ∧  𝑤  ∈  ℎ ) ) |