Step |
Hyp |
Ref |
Expression |
1 |
|
dfac5lem.1 |
⊢ 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } |
2 |
|
dfac5lem.2 |
⊢ ( 𝜑 ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
3 |
|
vex |
⊢ 𝑧 ∈ V |
4 |
|
neeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅ ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑢 = 𝑧 → ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
7 |
4 6
|
anbi12d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) ) |
8 |
3 7
|
elab |
⊢ ( 𝑧 ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
9 |
8
|
simplbi |
⊢ ( 𝑧 ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } → 𝑧 ≠ ∅ ) |
10 |
9 1
|
eleq2s |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ≠ ∅ ) |
11 |
10
|
rgen |
⊢ ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ |
12 |
|
df-an |
⊢ ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) ↔ ¬ ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) |
13 |
3 7 1
|
elab2 |
⊢ ( 𝑧 ∈ 𝐴 ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) |
14 |
13
|
simprbi |
⊢ ( 𝑧 ∈ 𝐴 → ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ) |
15 |
|
vex |
⊢ 𝑤 ∈ V |
16 |
|
neeq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 ≠ ∅ ↔ 𝑤 ≠ ∅ ) ) |
17 |
|
eqeq1 |
⊢ ( 𝑢 = 𝑤 → ( 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑢 = 𝑤 → ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) |
19 |
16 18
|
anbi12d |
⊢ ( 𝑢 = 𝑤 → ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) ) |
20 |
15 19 1
|
elab2 |
⊢ ( 𝑤 ∈ 𝐴 ↔ ( 𝑤 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) |
21 |
20
|
simprbi |
⊢ ( 𝑤 ∈ 𝐴 → ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ) |
22 |
|
sneq |
⊢ ( 𝑡 = 𝑔 → { 𝑡 } = { 𝑔 } ) |
23 |
22
|
xpeq1d |
⊢ ( 𝑡 = 𝑔 → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑡 ) ) |
24 |
|
xpeq2 |
⊢ ( 𝑡 = 𝑔 → ( { 𝑔 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) |
25 |
23 24
|
eqtrd |
⊢ ( 𝑡 = 𝑔 → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) |
26 |
25
|
eqeq2d |
⊢ ( 𝑡 = 𝑔 → ( 𝑤 = ( { 𝑡 } × 𝑡 ) ↔ 𝑤 = ( { 𝑔 } × 𝑔 ) ) ) |
27 |
26
|
cbvrexvw |
⊢ ( ∃ 𝑡 ∈ ℎ 𝑤 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) ) |
28 |
21 27
|
sylib |
⊢ ( 𝑤 ∈ 𝐴 → ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) ) |
29 |
|
eleq2 |
⊢ ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( { 𝑡 } × 𝑡 ) ) ) |
30 |
|
elxp |
⊢ ( 𝑥 ∈ ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑢 ∃ 𝑣 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
31 |
|
opeq1 |
⊢ ( 𝑢 = 𝑠 → 〈 𝑢 , 𝑣 〉 = 〈 𝑠 , 𝑣 〉 ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑢 = 𝑠 → ( 𝑥 = 〈 𝑢 , 𝑣 〉 ↔ 𝑥 = 〈 𝑠 , 𝑣 〉 ) ) |
33 |
|
eleq1w |
⊢ ( 𝑢 = 𝑠 → ( 𝑢 ∈ { 𝑡 } ↔ 𝑠 ∈ { 𝑡 } ) ) |
34 |
33
|
anbi1d |
⊢ ( 𝑢 = 𝑠 → ( ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ↔ ( 𝑠 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
35 |
32 34
|
anbi12d |
⊢ ( 𝑢 = 𝑠 → ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ↔ ( 𝑥 = 〈 𝑠 , 𝑣 〉 ∧ ( 𝑠 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) ) |
36 |
35
|
excomimw |
⊢ ( ∃ 𝑢 ∃ 𝑣 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) → ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
37 |
30 36
|
sylbi |
⊢ ( 𝑥 ∈ ( { 𝑡 } × 𝑡 ) → ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) |
38 |
29 37
|
biimtrdi |
⊢ ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑥 ∈ 𝑧 → ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ) ) |
39 |
|
eleq2 |
⊢ ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ ( { 𝑔 } × 𝑔 ) ) ) |
40 |
|
elxp |
⊢ ( 𝑥 ∈ ( { 𝑔 } × 𝑔 ) ↔ ∃ 𝑢 ∃ 𝑦 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
41 |
|
opeq1 |
⊢ ( 𝑢 = 𝑠 → 〈 𝑢 , 𝑦 〉 = 〈 𝑠 , 𝑦 〉 ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑢 = 𝑠 → ( 𝑥 = 〈 𝑢 , 𝑦 〉 ↔ 𝑥 = 〈 𝑠 , 𝑦 〉 ) ) |
43 |
|
eleq1w |
⊢ ( 𝑢 = 𝑠 → ( 𝑢 ∈ { 𝑔 } ↔ 𝑠 ∈ { 𝑔 } ) ) |
44 |
43
|
anbi1d |
⊢ ( 𝑢 = 𝑠 → ( ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ↔ ( 𝑠 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
45 |
42 44
|
anbi12d |
⊢ ( 𝑢 = 𝑠 → ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ↔ ( 𝑥 = 〈 𝑠 , 𝑦 〉 ∧ ( 𝑠 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) |
46 |
45
|
excomimw |
⊢ ( ∃ 𝑢 ∃ 𝑦 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) → ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
47 |
40 46
|
sylbi |
⊢ ( 𝑥 ∈ ( { 𝑔 } × 𝑔 ) → ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) |
48 |
39 47
|
biimtrdi |
⊢ ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( 𝑥 ∈ 𝑤 → ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) |
49 |
38 48
|
im2anan9 |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → ( ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) ) |
50 |
|
exdistrv |
⊢ ( ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ↔ ( ∃ 𝑣 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑦 ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) |
51 |
49 50
|
imbitrrdi |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) ) ) |
52 |
|
velsn |
⊢ ( 𝑢 ∈ { 𝑡 } ↔ 𝑢 = 𝑡 ) |
53 |
|
opeq1 |
⊢ ( 𝑢 = 𝑡 → 〈 𝑢 , 𝑣 〉 = 〈 𝑡 , 𝑣 〉 ) |
54 |
53
|
eqeq2d |
⊢ ( 𝑢 = 𝑡 → ( 𝑥 = 〈 𝑢 , 𝑣 〉 ↔ 𝑥 = 〈 𝑡 , 𝑣 〉 ) ) |
55 |
54
|
biimpac |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 = 𝑡 ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
56 |
52 55
|
sylan2b |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ 𝑢 ∈ { 𝑡 } ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
57 |
56
|
adantrr |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
58 |
57
|
exlimiv |
⊢ ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) → 𝑥 = 〈 𝑡 , 𝑣 〉 ) |
59 |
|
velsn |
⊢ ( 𝑢 ∈ { 𝑔 } ↔ 𝑢 = 𝑔 ) |
60 |
|
opeq1 |
⊢ ( 𝑢 = 𝑔 → 〈 𝑢 , 𝑦 〉 = 〈 𝑔 , 𝑦 〉 ) |
61 |
60
|
eqeq2d |
⊢ ( 𝑢 = 𝑔 → ( 𝑥 = 〈 𝑢 , 𝑦 〉 ↔ 𝑥 = 〈 𝑔 , 𝑦 〉 ) ) |
62 |
61
|
biimpac |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ 𝑢 = 𝑔 ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
63 |
59 62
|
sylan2b |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ 𝑢 ∈ { 𝑔 } ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
64 |
63
|
adantrr |
⊢ ( ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
65 |
64
|
exlimiv |
⊢ ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) → 𝑥 = 〈 𝑔 , 𝑦 〉 ) |
66 |
58 65
|
sylan9req |
⊢ ( ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) → 〈 𝑡 , 𝑣 〉 = 〈 𝑔 , 𝑦 〉 ) |
67 |
|
vex |
⊢ 𝑡 ∈ V |
68 |
|
vex |
⊢ 𝑣 ∈ V |
69 |
67 68
|
opth1 |
⊢ ( 〈 𝑡 , 𝑣 〉 = 〈 𝑔 , 𝑦 〉 → 𝑡 = 𝑔 ) |
70 |
66 69
|
syl |
⊢ ( ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) → 𝑡 = 𝑔 ) |
71 |
70
|
exlimivv |
⊢ ( ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑣 〉 ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣 ∈ 𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = 〈 𝑢 , 𝑦 〉 ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦 ∈ 𝑔 ) ) ) → 𝑡 = 𝑔 ) |
72 |
51 71
|
syl6 |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑡 = 𝑔 ) ) |
73 |
72 25
|
syl6 |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) ) |
74 |
|
eqeq12 |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( 𝑧 = 𝑤 ↔ ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) ) |
75 |
73 74
|
sylibrd |
⊢ ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
76 |
75
|
ex |
⊢ ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
77 |
76
|
rexlimivw |
⊢ ( ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
78 |
77
|
rexlimdvw |
⊢ ( ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) → ( ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
79 |
78
|
imp |
⊢ ( ( ∃ 𝑡 ∈ ℎ 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ ∃ 𝑔 ∈ ℎ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
80 |
14 28 79
|
syl2an |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
81 |
12 80
|
biimtrrid |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( ¬ ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) → 𝑧 = 𝑤 ) ) |
82 |
81
|
necon1ad |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) ) |
83 |
82
|
alrimdv |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ∀ 𝑥 ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) ) |
84 |
|
disj1 |
⊢ ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑧 → ¬ 𝑥 ∈ 𝑤 ) ) |
85 |
83 84
|
imbitrrdi |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
86 |
85
|
rgen2 |
⊢ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) |
87 |
|
vex |
⊢ ℎ ∈ V |
88 |
|
vuniex |
⊢ ∪ ℎ ∈ V |
89 |
87 88
|
xpex |
⊢ ( ℎ × ∪ ℎ ) ∈ V |
90 |
89
|
pwex |
⊢ 𝒫 ( ℎ × ∪ ℎ ) ∈ V |
91 |
|
snssi |
⊢ ( 𝑡 ∈ ℎ → { 𝑡 } ⊆ ℎ ) |
92 |
|
elssuni |
⊢ ( 𝑡 ∈ ℎ → 𝑡 ⊆ ∪ ℎ ) |
93 |
|
xpss12 |
⊢ ( ( { 𝑡 } ⊆ ℎ ∧ 𝑡 ⊆ ∪ ℎ ) → ( { 𝑡 } × 𝑡 ) ⊆ ( ℎ × ∪ ℎ ) ) |
94 |
91 92 93
|
syl2anc |
⊢ ( 𝑡 ∈ ℎ → ( { 𝑡 } × 𝑡 ) ⊆ ( ℎ × ∪ ℎ ) ) |
95 |
|
vsnex |
⊢ { 𝑡 } ∈ V |
96 |
95 67
|
xpex |
⊢ ( { 𝑡 } × 𝑡 ) ∈ V |
97 |
96
|
elpw |
⊢ ( ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( ℎ × ∪ ℎ ) ↔ ( { 𝑡 } × 𝑡 ) ⊆ ( ℎ × ∪ ℎ ) ) |
98 |
94 97
|
sylibr |
⊢ ( 𝑡 ∈ ℎ → ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( ℎ × ∪ ℎ ) ) |
99 |
|
eleq1 |
⊢ ( 𝑢 = ( { 𝑡 } × 𝑡 ) → ( 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ↔ ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( ℎ × ∪ ℎ ) ) ) |
100 |
98 99
|
syl5ibrcom |
⊢ ( 𝑡 ∈ ℎ → ( 𝑢 = ( { 𝑡 } × 𝑡 ) → 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ) ) |
101 |
100
|
rexlimiv |
⊢ ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) → 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ) |
102 |
101
|
adantl |
⊢ ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) → 𝑢 ∈ 𝒫 ( ℎ × ∪ ℎ ) ) |
103 |
102
|
abssi |
⊢ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ⊆ 𝒫 ( ℎ × ∪ ℎ ) |
104 |
90 103
|
ssexi |
⊢ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∈ V |
105 |
1 104
|
eqeltri |
⊢ 𝐴 ∈ V |
106 |
|
raleq |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ) ) |
107 |
|
raleq |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
108 |
107
|
raleqbi1dv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
109 |
106 108
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ↔ ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
110 |
|
raleq |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
111 |
110
|
exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
112 |
109 111
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
113 |
105 112
|
spcv |
⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) → ( ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
114 |
2 113
|
sylbi |
⊢ ( 𝜑 → ( ( ∀ 𝑧 ∈ 𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) |
115 |
11 86 114
|
mp2ani |
⊢ ( 𝜑 → ∃ 𝑦 ∀ 𝑧 ∈ 𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) |