Metamath Proof Explorer


Theorem dfac5lem4

Description: Lemma for dfac5 . (Contributed by NM, 11-Apr-2004) Avoid ax-11 . (Revised by BTernaryTau, 23-Jun-2025)

Ref Expression
Hypotheses dfac5lem.1 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ) }
dfac5lem.2 ( 𝜑 ↔ ∀ 𝑥 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
Assertion dfac5lem4 ( 𝜑 → ∃ 𝑦𝑧𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 dfac5lem.1 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ) }
2 dfac5lem.2 ( 𝜑 ↔ ∀ 𝑥 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
3 vex 𝑧 ∈ V
4 neeq1 ( 𝑢 = 𝑧 → ( 𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅ ) )
5 eqeq1 ( 𝑢 = 𝑧 → ( 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ 𝑧 = ( { 𝑡 } × 𝑡 ) ) )
6 5 rexbidv ( 𝑢 = 𝑧 → ( ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 𝑧 = ( { 𝑡 } × 𝑡 ) ) )
7 4 6 anbi12d ( 𝑢 = 𝑧 → ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ) ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 𝑧 = ( { 𝑡 } × 𝑡 ) ) ) )
8 3 7 elab ( 𝑧 ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 𝑧 = ( { 𝑡 } × 𝑡 ) ) )
9 8 simplbi ( 𝑧 ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ) } → 𝑧 ≠ ∅ )
10 9 1 eleq2s ( 𝑧𝐴𝑧 ≠ ∅ )
11 10 rgen 𝑧𝐴 𝑧 ≠ ∅
12 df-an ( ( 𝑥𝑧𝑥𝑤 ) ↔ ¬ ( 𝑥𝑧 → ¬ 𝑥𝑤 ) )
13 3 7 1 elab2 ( 𝑧𝐴 ↔ ( 𝑧 ≠ ∅ ∧ ∃ 𝑡 𝑧 = ( { 𝑡 } × 𝑡 ) ) )
14 13 simprbi ( 𝑧𝐴 → ∃ 𝑡 𝑧 = ( { 𝑡 } × 𝑡 ) )
15 vex 𝑤 ∈ V
16 neeq1 ( 𝑢 = 𝑤 → ( 𝑢 ≠ ∅ ↔ 𝑤 ≠ ∅ ) )
17 eqeq1 ( 𝑢 = 𝑤 → ( 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ 𝑤 = ( { 𝑡 } × 𝑡 ) ) )
18 17 rexbidv ( 𝑢 = 𝑤 → ( ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 𝑤 = ( { 𝑡 } × 𝑡 ) ) )
19 16 18 anbi12d ( 𝑢 = 𝑤 → ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ∃ 𝑡 𝑤 = ( { 𝑡 } × 𝑡 ) ) ) )
20 15 19 1 elab2 ( 𝑤𝐴 ↔ ( 𝑤 ≠ ∅ ∧ ∃ 𝑡 𝑤 = ( { 𝑡 } × 𝑡 ) ) )
21 20 simprbi ( 𝑤𝐴 → ∃ 𝑡 𝑤 = ( { 𝑡 } × 𝑡 ) )
22 sneq ( 𝑡 = 𝑔 → { 𝑡 } = { 𝑔 } )
23 22 xpeq1d ( 𝑡 = 𝑔 → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑡 ) )
24 xpeq2 ( 𝑡 = 𝑔 → ( { 𝑔 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) )
25 23 24 eqtrd ( 𝑡 = 𝑔 → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) )
26 25 eqeq2d ( 𝑡 = 𝑔 → ( 𝑤 = ( { 𝑡 } × 𝑡 ) ↔ 𝑤 = ( { 𝑔 } × 𝑔 ) ) )
27 26 cbvrexvw ( ∃ 𝑡 𝑤 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑔 𝑤 = ( { 𝑔 } × 𝑔 ) )
28 21 27 sylib ( 𝑤𝐴 → ∃ 𝑔 𝑤 = ( { 𝑔 } × 𝑔 ) )
29 eleq2 ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑥𝑧𝑥 ∈ ( { 𝑡 } × 𝑡 ) ) )
30 elxp ( 𝑥 ∈ ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑢𝑣 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) )
31 opeq1 ( 𝑢 = 𝑠 → ⟨ 𝑢 , 𝑣 ⟩ = ⟨ 𝑠 , 𝑣 ⟩ )
32 31 eqeq2d ( 𝑢 = 𝑠 → ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ↔ 𝑥 = ⟨ 𝑠 , 𝑣 ⟩ ) )
33 eleq1w ( 𝑢 = 𝑠 → ( 𝑢 ∈ { 𝑡 } ↔ 𝑠 ∈ { 𝑡 } ) )
34 33 anbi1d ( 𝑢 = 𝑠 → ( ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ↔ ( 𝑠 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) )
35 32 34 anbi12d ( 𝑢 = 𝑠 → ( ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ↔ ( 𝑥 = ⟨ 𝑠 , 𝑣 ⟩ ∧ ( 𝑠 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ) )
36 35 excomimw ( ∃ 𝑢𝑣 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) → ∃ 𝑣𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) )
37 30 36 sylbi ( 𝑥 ∈ ( { 𝑡 } × 𝑡 ) → ∃ 𝑣𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) )
38 29 37 biimtrdi ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑥𝑧 → ∃ 𝑣𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ) )
39 eleq2 ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( 𝑥𝑤𝑥 ∈ ( { 𝑔 } × 𝑔 ) ) )
40 elxp ( 𝑥 ∈ ( { 𝑔 } × 𝑔 ) ↔ ∃ 𝑢𝑦 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) )
41 opeq1 ( 𝑢 = 𝑠 → ⟨ 𝑢 , 𝑦 ⟩ = ⟨ 𝑠 , 𝑦 ⟩ )
42 41 eqeq2d ( 𝑢 = 𝑠 → ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ↔ 𝑥 = ⟨ 𝑠 , 𝑦 ⟩ ) )
43 eleq1w ( 𝑢 = 𝑠 → ( 𝑢 ∈ { 𝑔 } ↔ 𝑠 ∈ { 𝑔 } ) )
44 43 anbi1d ( 𝑢 = 𝑠 → ( ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ↔ ( 𝑠 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) )
45 42 44 anbi12d ( 𝑢 = 𝑠 → ( ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ↔ ( 𝑥 = ⟨ 𝑠 , 𝑦 ⟩ ∧ ( 𝑠 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ) )
46 45 excomimw ( ∃ 𝑢𝑦 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) → ∃ 𝑦𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) )
47 40 46 sylbi ( 𝑥 ∈ ( { 𝑔 } × 𝑔 ) → ∃ 𝑦𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) )
48 39 47 biimtrdi ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( 𝑥𝑤 → ∃ 𝑦𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ) )
49 38 48 im2anan9 ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥𝑧𝑥𝑤 ) → ( ∃ 𝑣𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ∧ ∃ 𝑦𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ) ) )
50 exdistrv ( ∃ 𝑣𝑦 ( ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ) ↔ ( ∃ 𝑣𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ∧ ∃ 𝑦𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ) )
51 49 50 imbitrrdi ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥𝑧𝑥𝑤 ) → ∃ 𝑣𝑦 ( ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ) ) )
52 velsn ( 𝑢 ∈ { 𝑡 } ↔ 𝑢 = 𝑡 )
53 opeq1 ( 𝑢 = 𝑡 → ⟨ 𝑢 , 𝑣 ⟩ = ⟨ 𝑡 , 𝑣 ⟩ )
54 53 eqeq2d ( 𝑢 = 𝑡 → ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ↔ 𝑥 = ⟨ 𝑡 , 𝑣 ⟩ ) )
55 54 biimpac ( ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ 𝑢 = 𝑡 ) → 𝑥 = ⟨ 𝑡 , 𝑣 ⟩ )
56 52 55 sylan2b ( ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ 𝑢 ∈ { 𝑡 } ) → 𝑥 = ⟨ 𝑡 , 𝑣 ⟩ )
57 56 adantrr ( ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) → 𝑥 = ⟨ 𝑡 , 𝑣 ⟩ )
58 57 exlimiv ( ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) → 𝑥 = ⟨ 𝑡 , 𝑣 ⟩ )
59 velsn ( 𝑢 ∈ { 𝑔 } ↔ 𝑢 = 𝑔 )
60 opeq1 ( 𝑢 = 𝑔 → ⟨ 𝑢 , 𝑦 ⟩ = ⟨ 𝑔 , 𝑦 ⟩ )
61 60 eqeq2d ( 𝑢 = 𝑔 → ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ↔ 𝑥 = ⟨ 𝑔 , 𝑦 ⟩ ) )
62 61 biimpac ( ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ 𝑢 = 𝑔 ) → 𝑥 = ⟨ 𝑔 , 𝑦 ⟩ )
63 59 62 sylan2b ( ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ 𝑢 ∈ { 𝑔 } ) → 𝑥 = ⟨ 𝑔 , 𝑦 ⟩ )
64 63 adantrr ( ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) → 𝑥 = ⟨ 𝑔 , 𝑦 ⟩ )
65 64 exlimiv ( ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) → 𝑥 = ⟨ 𝑔 , 𝑦 ⟩ )
66 58 65 sylan9req ( ( ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ) → ⟨ 𝑡 , 𝑣 ⟩ = ⟨ 𝑔 , 𝑦 ⟩ )
67 vex 𝑡 ∈ V
68 vex 𝑣 ∈ V
69 67 68 opth1 ( ⟨ 𝑡 , 𝑣 ⟩ = ⟨ 𝑔 , 𝑦 ⟩ → 𝑡 = 𝑔 )
70 66 69 syl ( ( ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ) → 𝑡 = 𝑔 )
71 70 exlimivv ( ∃ 𝑣𝑦 ( ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑣 ⟩ ∧ ( 𝑢 ∈ { 𝑡 } ∧ 𝑣𝑡 ) ) ∧ ∃ 𝑢 ( 𝑥 = ⟨ 𝑢 , 𝑦 ⟩ ∧ ( 𝑢 ∈ { 𝑔 } ∧ 𝑦𝑔 ) ) ) → 𝑡 = 𝑔 )
72 51 71 syl6 ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥𝑧𝑥𝑤 ) → 𝑡 = 𝑔 ) )
73 72 25 syl6 ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥𝑧𝑥𝑤 ) → ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) )
74 eqeq12 ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( 𝑧 = 𝑤 ↔ ( { 𝑡 } × 𝑡 ) = ( { 𝑔 } × 𝑔 ) ) )
75 73 74 sylibrd ( ( 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥𝑧𝑥𝑤 ) → 𝑧 = 𝑤 ) )
76 75 ex ( 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥𝑧𝑥𝑤 ) → 𝑧 = 𝑤 ) ) )
77 76 rexlimivw ( ∃ 𝑡 𝑧 = ( { 𝑡 } × 𝑡 ) → ( 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥𝑧𝑥𝑤 ) → 𝑧 = 𝑤 ) ) )
78 77 rexlimdvw ( ∃ 𝑡 𝑧 = ( { 𝑡 } × 𝑡 ) → ( ∃ 𝑔 𝑤 = ( { 𝑔 } × 𝑔 ) → ( ( 𝑥𝑧𝑥𝑤 ) → 𝑧 = 𝑤 ) ) )
79 78 imp ( ( ∃ 𝑡 𝑧 = ( { 𝑡 } × 𝑡 ) ∧ ∃ 𝑔 𝑤 = ( { 𝑔 } × 𝑔 ) ) → ( ( 𝑥𝑧𝑥𝑤 ) → 𝑧 = 𝑤 ) )
80 14 28 79 syl2an ( ( 𝑧𝐴𝑤𝐴 ) → ( ( 𝑥𝑧𝑥𝑤 ) → 𝑧 = 𝑤 ) )
81 12 80 biimtrrid ( ( 𝑧𝐴𝑤𝐴 ) → ( ¬ ( 𝑥𝑧 → ¬ 𝑥𝑤 ) → 𝑧 = 𝑤 ) )
82 81 necon1ad ( ( 𝑧𝐴𝑤𝐴 ) → ( 𝑧𝑤 → ( 𝑥𝑧 → ¬ 𝑥𝑤 ) ) )
83 82 alrimdv ( ( 𝑧𝐴𝑤𝐴 ) → ( 𝑧𝑤 → ∀ 𝑥 ( 𝑥𝑧 → ¬ 𝑥𝑤 ) ) )
84 disj1 ( ( 𝑧𝑤 ) = ∅ ↔ ∀ 𝑥 ( 𝑥𝑧 → ¬ 𝑥𝑤 ) )
85 83 84 imbitrrdi ( ( 𝑧𝐴𝑤𝐴 ) → ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) )
86 85 rgen2 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ )
87 vex ∈ V
88 vuniex ∈ V
89 87 88 xpex ( × ) ∈ V
90 89 pwex 𝒫 ( × ) ∈ V
91 snssi ( 𝑡 → { 𝑡 } ⊆ )
92 elssuni ( 𝑡𝑡 )
93 xpss12 ( ( { 𝑡 } ⊆ 𝑡 ) → ( { 𝑡 } × 𝑡 ) ⊆ ( × ) )
94 91 92 93 syl2anc ( 𝑡 → ( { 𝑡 } × 𝑡 ) ⊆ ( × ) )
95 vsnex { 𝑡 } ∈ V
96 95 67 xpex ( { 𝑡 } × 𝑡 ) ∈ V
97 96 elpw ( ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( × ) ↔ ( { 𝑡 } × 𝑡 ) ⊆ ( × ) )
98 94 97 sylibr ( 𝑡 → ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( × ) )
99 eleq1 ( 𝑢 = ( { 𝑡 } × 𝑡 ) → ( 𝑢 ∈ 𝒫 ( × ) ↔ ( { 𝑡 } × 𝑡 ) ∈ 𝒫 ( × ) ) )
100 98 99 syl5ibrcom ( 𝑡 → ( 𝑢 = ( { 𝑡 } × 𝑡 ) → 𝑢 ∈ 𝒫 ( × ) ) )
101 100 rexlimiv ( ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) → 𝑢 ∈ 𝒫 ( × ) )
102 101 adantl ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ) → 𝑢 ∈ 𝒫 ( × ) )
103 102 abssi { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ⊆ 𝒫 ( × )
104 90 103 ssexi { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ∈ V
105 1 104 eqeltri 𝐴 ∈ V
106 raleq ( 𝑥 = 𝐴 → ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ↔ ∀ 𝑧𝐴 𝑧 ≠ ∅ ) )
107 raleq ( 𝑥 = 𝐴 → ( ∀ 𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ↔ ∀ 𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) )
108 107 raleqbi1dv ( 𝑥 = 𝐴 → ( ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ↔ ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) )
109 106 108 anbi12d ( 𝑥 = 𝐴 → ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) ↔ ( ∀ 𝑧𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) ) )
110 raleq ( 𝑥 = 𝐴 → ( ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ↔ ∀ 𝑧𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
111 110 exbidv ( 𝑥 = 𝐴 → ( ∃ 𝑦𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ↔ ∃ 𝑦𝑧𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
112 109 111 imbi12d ( 𝑥 = 𝐴 → ( ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) ↔ ( ( ∀ 𝑧𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) ) )
113 105 112 spcv ( ∀ 𝑥 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) → ( ( ∀ 𝑧𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
114 2 113 sylbi ( 𝜑 → ( ( ∀ 𝑧𝐴 𝑧 ≠ ∅ ∧ ∀ 𝑧𝐴𝑤𝐴 ( 𝑧𝑤 → ( 𝑧𝑤 ) = ∅ ) ) → ∃ 𝑦𝑧𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ) )
115 11 86 114 mp2ani ( 𝜑 → ∃ 𝑦𝑧𝐴 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )