| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfac5lem.1 | ⊢ 𝐴  =  { 𝑢  ∣  ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) ) } | 
						
							| 2 |  | dfac5lemOLD.2 | ⊢ 𝐵  =  ( ∪  𝐴  ∩  𝑦 ) | 
						
							| 3 |  | dfac5lemOLD.3 | ⊢ ( 𝜑  ↔  ∀ 𝑥 ( ( ∀ 𝑧  ∈  𝑥 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑥 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) )  →  ∃ 𝑦 ∀ 𝑧  ∈  𝑥 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 ) ) ) | 
						
							| 4 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 5 |  | neeq1 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑢  ≠  ∅  ↔  𝑧  ≠  ∅ ) ) | 
						
							| 6 |  | eqeq1 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑢  =  ( { 𝑡 }  ×  𝑡 )  ↔  𝑧  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑢  =  𝑧  →  ( ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 )  ↔  ∃ 𝑡  ∈  ℎ 𝑧  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 8 | 5 7 | anbi12d | ⊢ ( 𝑢  =  𝑧  →  ( ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) )  ↔  ( 𝑧  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑧  =  ( { 𝑡 }  ×  𝑡 ) ) ) ) | 
						
							| 9 | 4 8 | elab | ⊢ ( 𝑧  ∈  { 𝑢  ∣  ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) ) }  ↔  ( 𝑧  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑧  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 10 | 9 | simplbi | ⊢ ( 𝑧  ∈  { 𝑢  ∣  ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) ) }  →  𝑧  ≠  ∅ ) | 
						
							| 11 | 10 1 | eleq2s | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ≠  ∅ ) | 
						
							| 12 | 11 | rgen | ⊢ ∀ 𝑧  ∈  𝐴 𝑧  ≠  ∅ | 
						
							| 13 |  | df-an | ⊢ ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  ↔  ¬  ( 𝑥  ∈  𝑧  →  ¬  𝑥  ∈  𝑤 ) ) | 
						
							| 14 | 4 8 1 | elab2 | ⊢ ( 𝑧  ∈  𝐴  ↔  ( 𝑧  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑧  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 15 | 14 | simprbi | ⊢ ( 𝑧  ∈  𝐴  →  ∃ 𝑡  ∈  ℎ 𝑧  =  ( { 𝑡 }  ×  𝑡 ) ) | 
						
							| 16 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 17 |  | neeq1 | ⊢ ( 𝑢  =  𝑤  →  ( 𝑢  ≠  ∅  ↔  𝑤  ≠  ∅ ) ) | 
						
							| 18 |  | eqeq1 | ⊢ ( 𝑢  =  𝑤  →  ( 𝑢  =  ( { 𝑡 }  ×  𝑡 )  ↔  𝑤  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑢  =  𝑤  →  ( ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 )  ↔  ∃ 𝑡  ∈  ℎ 𝑤  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 20 | 17 19 | anbi12d | ⊢ ( 𝑢  =  𝑤  →  ( ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) )  ↔  ( 𝑤  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑤  =  ( { 𝑡 }  ×  𝑡 ) ) ) ) | 
						
							| 21 | 16 20 1 | elab2 | ⊢ ( 𝑤  ∈  𝐴  ↔  ( 𝑤  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑤  =  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 22 | 21 | simprbi | ⊢ ( 𝑤  ∈  𝐴  →  ∃ 𝑡  ∈  ℎ 𝑤  =  ( { 𝑡 }  ×  𝑡 ) ) | 
						
							| 23 |  | sneq | ⊢ ( 𝑡  =  𝑔  →  { 𝑡 }  =  { 𝑔 } ) | 
						
							| 24 | 23 | xpeq1d | ⊢ ( 𝑡  =  𝑔  →  ( { 𝑡 }  ×  𝑡 )  =  ( { 𝑔 }  ×  𝑡 ) ) | 
						
							| 25 |  | xpeq2 | ⊢ ( 𝑡  =  𝑔  →  ( { 𝑔 }  ×  𝑡 )  =  ( { 𝑔 }  ×  𝑔 ) ) | 
						
							| 26 | 24 25 | eqtrd | ⊢ ( 𝑡  =  𝑔  →  ( { 𝑡 }  ×  𝑡 )  =  ( { 𝑔 }  ×  𝑔 ) ) | 
						
							| 27 | 26 | eqeq2d | ⊢ ( 𝑡  =  𝑔  →  ( 𝑤  =  ( { 𝑡 }  ×  𝑡 )  ↔  𝑤  =  ( { 𝑔 }  ×  𝑔 ) ) ) | 
						
							| 28 | 27 | cbvrexvw | ⊢ ( ∃ 𝑡  ∈  ℎ 𝑤  =  ( { 𝑡 }  ×  𝑡 )  ↔  ∃ 𝑔  ∈  ℎ 𝑤  =  ( { 𝑔 }  ×  𝑔 ) ) | 
						
							| 29 | 22 28 | sylib | ⊢ ( 𝑤  ∈  𝐴  →  ∃ 𝑔  ∈  ℎ 𝑤  =  ( { 𝑔 }  ×  𝑔 ) ) | 
						
							| 30 |  | eleq2 | ⊢ ( 𝑧  =  ( { 𝑡 }  ×  𝑡 )  →  ( 𝑥  ∈  𝑧  ↔  𝑥  ∈  ( { 𝑡 }  ×  𝑡 ) ) ) | 
						
							| 31 |  | elxp | ⊢ ( 𝑥  ∈  ( { 𝑡 }  ×  𝑡 )  ↔  ∃ 𝑢 ∃ 𝑣 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) ) ) | 
						
							| 32 |  | excom | ⊢ ( ∃ 𝑢 ∃ 𝑣 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  ↔  ∃ 𝑣 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) ) ) | 
						
							| 33 | 31 32 | bitri | ⊢ ( 𝑥  ∈  ( { 𝑡 }  ×  𝑡 )  ↔  ∃ 𝑣 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) ) ) | 
						
							| 34 | 30 33 | bitrdi | ⊢ ( 𝑧  =  ( { 𝑡 }  ×  𝑡 )  →  ( 𝑥  ∈  𝑧  ↔  ∃ 𝑣 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) ) ) ) | 
						
							| 35 |  | eleq2 | ⊢ ( 𝑤  =  ( { 𝑔 }  ×  𝑔 )  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  ( { 𝑔 }  ×  𝑔 ) ) ) | 
						
							| 36 |  | elxp | ⊢ ( 𝑥  ∈  ( { 𝑔 }  ×  𝑔 )  ↔  ∃ 𝑢 ∃ 𝑦 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) ) | 
						
							| 37 |  | excom | ⊢ ( ∃ 𝑢 ∃ 𝑦 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) )  ↔  ∃ 𝑦 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) ) | 
						
							| 38 | 36 37 | bitri | ⊢ ( 𝑥  ∈  ( { 𝑔 }  ×  𝑔 )  ↔  ∃ 𝑦 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) ) | 
						
							| 39 | 35 38 | bitrdi | ⊢ ( 𝑤  =  ( { 𝑔 }  ×  𝑔 )  →  ( 𝑥  ∈  𝑤  ↔  ∃ 𝑦 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) ) ) | 
						
							| 40 | 34 39 | bi2anan9 | ⊢ ( ( 𝑧  =  ( { 𝑡 }  ×  𝑡 )  ∧  𝑤  =  ( { 𝑔 }  ×  𝑔 ) )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  ↔  ( ∃ 𝑣 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  ∧  ∃ 𝑦 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) ) ) ) | 
						
							| 41 |  | exdistrv | ⊢ ( ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  ∧  ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) )  ↔  ( ∃ 𝑣 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  ∧  ∃ 𝑦 ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) ) ) | 
						
							| 42 | 40 41 | bitr4di | ⊢ ( ( 𝑧  =  ( { 𝑡 }  ×  𝑡 )  ∧  𝑤  =  ( { 𝑔 }  ×  𝑔 ) )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  ↔  ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  ∧  ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) ) ) ) | 
						
							| 43 |  | velsn | ⊢ ( 𝑢  ∈  { 𝑡 }  ↔  𝑢  =  𝑡 ) | 
						
							| 44 |  | opeq1 | ⊢ ( 𝑢  =  𝑡  →  〈 𝑢 ,  𝑣 〉  =  〈 𝑡 ,  𝑣 〉 ) | 
						
							| 45 | 44 | eqeq2d | ⊢ ( 𝑢  =  𝑡  →  ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ↔  𝑥  =  〈 𝑡 ,  𝑣 〉 ) ) | 
						
							| 46 | 45 | biimpac | ⊢ ( ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  𝑢  =  𝑡 )  →  𝑥  =  〈 𝑡 ,  𝑣 〉 ) | 
						
							| 47 | 43 46 | sylan2b | ⊢ ( ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  𝑢  ∈  { 𝑡 } )  →  𝑥  =  〈 𝑡 ,  𝑣 〉 ) | 
						
							| 48 | 47 | adantrr | ⊢ ( ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  →  𝑥  =  〈 𝑡 ,  𝑣 〉 ) | 
						
							| 49 | 48 | exlimiv | ⊢ ( ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  →  𝑥  =  〈 𝑡 ,  𝑣 〉 ) | 
						
							| 50 |  | velsn | ⊢ ( 𝑢  ∈  { 𝑔 }  ↔  𝑢  =  𝑔 ) | 
						
							| 51 |  | opeq1 | ⊢ ( 𝑢  =  𝑔  →  〈 𝑢 ,  𝑦 〉  =  〈 𝑔 ,  𝑦 〉 ) | 
						
							| 52 | 51 | eqeq2d | ⊢ ( 𝑢  =  𝑔  →  ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ↔  𝑥  =  〈 𝑔 ,  𝑦 〉 ) ) | 
						
							| 53 | 52 | biimpac | ⊢ ( ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  𝑢  =  𝑔 )  →  𝑥  =  〈 𝑔 ,  𝑦 〉 ) | 
						
							| 54 | 50 53 | sylan2b | ⊢ ( ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  𝑢  ∈  { 𝑔 } )  →  𝑥  =  〈 𝑔 ,  𝑦 〉 ) | 
						
							| 55 | 54 | adantrr | ⊢ ( ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) )  →  𝑥  =  〈 𝑔 ,  𝑦 〉 ) | 
						
							| 56 | 55 | exlimiv | ⊢ ( ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) )  →  𝑥  =  〈 𝑔 ,  𝑦 〉 ) | 
						
							| 57 | 49 56 | sylan9req | ⊢ ( ( ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  ∧  ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) )  →  〈 𝑡 ,  𝑣 〉  =  〈 𝑔 ,  𝑦 〉 ) | 
						
							| 58 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 59 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 60 | 58 59 | opth1 | ⊢ ( 〈 𝑡 ,  𝑣 〉  =  〈 𝑔 ,  𝑦 〉  →  𝑡  =  𝑔 ) | 
						
							| 61 | 57 60 | syl | ⊢ ( ( ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  ∧  ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) )  →  𝑡  =  𝑔 ) | 
						
							| 62 | 61 | exlimivv | ⊢ ( ∃ 𝑣 ∃ 𝑦 ( ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑣 〉  ∧  ( 𝑢  ∈  { 𝑡 }  ∧  𝑣  ∈  𝑡 ) )  ∧  ∃ 𝑢 ( 𝑥  =  〈 𝑢 ,  𝑦 〉  ∧  ( 𝑢  ∈  { 𝑔 }  ∧  𝑦  ∈  𝑔 ) ) )  →  𝑡  =  𝑔 ) | 
						
							| 63 | 42 62 | biimtrdi | ⊢ ( ( 𝑧  =  ( { 𝑡 }  ×  𝑡 )  ∧  𝑤  =  ( { 𝑔 }  ×  𝑔 ) )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  →  𝑡  =  𝑔 ) ) | 
						
							| 64 | 63 26 | syl6 | ⊢ ( ( 𝑧  =  ( { 𝑡 }  ×  𝑡 )  ∧  𝑤  =  ( { 𝑔 }  ×  𝑔 ) )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  →  ( { 𝑡 }  ×  𝑡 )  =  ( { 𝑔 }  ×  𝑔 ) ) ) | 
						
							| 65 |  | eqeq12 | ⊢ ( ( 𝑧  =  ( { 𝑡 }  ×  𝑡 )  ∧  𝑤  =  ( { 𝑔 }  ×  𝑔 ) )  →  ( 𝑧  =  𝑤  ↔  ( { 𝑡 }  ×  𝑡 )  =  ( { 𝑔 }  ×  𝑔 ) ) ) | 
						
							| 66 | 64 65 | sylibrd | ⊢ ( ( 𝑧  =  ( { 𝑡 }  ×  𝑡 )  ∧  𝑤  =  ( { 𝑔 }  ×  𝑔 ) )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  →  𝑧  =  𝑤 ) ) | 
						
							| 67 | 66 | ex | ⊢ ( 𝑧  =  ( { 𝑡 }  ×  𝑡 )  →  ( 𝑤  =  ( { 𝑔 }  ×  𝑔 )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  →  𝑧  =  𝑤 ) ) ) | 
						
							| 68 | 67 | rexlimivw | ⊢ ( ∃ 𝑡  ∈  ℎ 𝑧  =  ( { 𝑡 }  ×  𝑡 )  →  ( 𝑤  =  ( { 𝑔 }  ×  𝑔 )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  →  𝑧  =  𝑤 ) ) ) | 
						
							| 69 | 68 | rexlimdvw | ⊢ ( ∃ 𝑡  ∈  ℎ 𝑧  =  ( { 𝑡 }  ×  𝑡 )  →  ( ∃ 𝑔  ∈  ℎ 𝑤  =  ( { 𝑔 }  ×  𝑔 )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  →  𝑧  =  𝑤 ) ) ) | 
						
							| 70 | 69 | imp | ⊢ ( ( ∃ 𝑡  ∈  ℎ 𝑧  =  ( { 𝑡 }  ×  𝑡 )  ∧  ∃ 𝑔  ∈  ℎ 𝑤  =  ( { 𝑔 }  ×  𝑔 ) )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  →  𝑧  =  𝑤 ) ) | 
						
							| 71 | 15 29 70 | syl2an | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝑤 )  →  𝑧  =  𝑤 ) ) | 
						
							| 72 | 13 71 | biimtrrid | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( ¬  ( 𝑥  ∈  𝑧  →  ¬  𝑥  ∈  𝑤 )  →  𝑧  =  𝑤 ) ) | 
						
							| 73 | 72 | necon1ad | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( 𝑧  ≠  𝑤  →  ( 𝑥  ∈  𝑧  →  ¬  𝑥  ∈  𝑤 ) ) ) | 
						
							| 74 | 73 | alrimdv | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( 𝑧  ≠  𝑤  →  ∀ 𝑥 ( 𝑥  ∈  𝑧  →  ¬  𝑥  ∈  𝑤 ) ) ) | 
						
							| 75 |  | disj1 | ⊢ ( ( 𝑧  ∩  𝑤 )  =  ∅  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑧  →  ¬  𝑥  ∈  𝑤 ) ) | 
						
							| 76 | 74 75 | imbitrrdi | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) ) | 
						
							| 77 | 76 | rgen2 | ⊢ ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) | 
						
							| 78 |  | vex | ⊢ ℎ  ∈  V | 
						
							| 79 |  | vuniex | ⊢ ∪  ℎ  ∈  V | 
						
							| 80 | 78 79 | xpex | ⊢ ( ℎ  ×  ∪  ℎ )  ∈  V | 
						
							| 81 | 80 | pwex | ⊢ 𝒫  ( ℎ  ×  ∪  ℎ )  ∈  V | 
						
							| 82 |  | snssi | ⊢ ( 𝑡  ∈  ℎ  →  { 𝑡 }  ⊆  ℎ ) | 
						
							| 83 |  | elssuni | ⊢ ( 𝑡  ∈  ℎ  →  𝑡  ⊆  ∪  ℎ ) | 
						
							| 84 |  | xpss12 | ⊢ ( ( { 𝑡 }  ⊆  ℎ  ∧  𝑡  ⊆  ∪  ℎ )  →  ( { 𝑡 }  ×  𝑡 )  ⊆  ( ℎ  ×  ∪  ℎ ) ) | 
						
							| 85 | 82 83 84 | syl2anc | ⊢ ( 𝑡  ∈  ℎ  →  ( { 𝑡 }  ×  𝑡 )  ⊆  ( ℎ  ×  ∪  ℎ ) ) | 
						
							| 86 |  | vsnex | ⊢ { 𝑡 }  ∈  V | 
						
							| 87 | 86 58 | xpex | ⊢ ( { 𝑡 }  ×  𝑡 )  ∈  V | 
						
							| 88 | 87 | elpw | ⊢ ( ( { 𝑡 }  ×  𝑡 )  ∈  𝒫  ( ℎ  ×  ∪  ℎ )  ↔  ( { 𝑡 }  ×  𝑡 )  ⊆  ( ℎ  ×  ∪  ℎ ) ) | 
						
							| 89 | 85 88 | sylibr | ⊢ ( 𝑡  ∈  ℎ  →  ( { 𝑡 }  ×  𝑡 )  ∈  𝒫  ( ℎ  ×  ∪  ℎ ) ) | 
						
							| 90 |  | eleq1 | ⊢ ( 𝑢  =  ( { 𝑡 }  ×  𝑡 )  →  ( 𝑢  ∈  𝒫  ( ℎ  ×  ∪  ℎ )  ↔  ( { 𝑡 }  ×  𝑡 )  ∈  𝒫  ( ℎ  ×  ∪  ℎ ) ) ) | 
						
							| 91 | 89 90 | syl5ibrcom | ⊢ ( 𝑡  ∈  ℎ  →  ( 𝑢  =  ( { 𝑡 }  ×  𝑡 )  →  𝑢  ∈  𝒫  ( ℎ  ×  ∪  ℎ ) ) ) | 
						
							| 92 | 91 | rexlimiv | ⊢ ( ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 )  →  𝑢  ∈  𝒫  ( ℎ  ×  ∪  ℎ ) ) | 
						
							| 93 | 92 | adantl | ⊢ ( ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) )  →  𝑢  ∈  𝒫  ( ℎ  ×  ∪  ℎ ) ) | 
						
							| 94 | 93 | abssi | ⊢ { 𝑢  ∣  ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) ) }  ⊆  𝒫  ( ℎ  ×  ∪  ℎ ) | 
						
							| 95 | 81 94 | ssexi | ⊢ { 𝑢  ∣  ( 𝑢  ≠  ∅  ∧  ∃ 𝑡  ∈  ℎ 𝑢  =  ( { 𝑡 }  ×  𝑡 ) ) }  ∈  V | 
						
							| 96 | 1 95 | eqeltri | ⊢ 𝐴  ∈  V | 
						
							| 97 |  | raleq | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑧  ∈  𝑥 𝑧  ≠  ∅  ↔  ∀ 𝑧  ∈  𝐴 𝑧  ≠  ∅ ) ) | 
						
							| 98 |  | raleq | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑤  ∈  𝑥 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ )  ↔  ∀ 𝑤  ∈  𝐴 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) ) ) | 
						
							| 99 | 98 | raleqbi1dv | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑥 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ )  ↔  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) ) ) | 
						
							| 100 | 97 99 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ∀ 𝑧  ∈  𝑥 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑥 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) )  ↔  ( ∀ 𝑧  ∈  𝐴 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) ) ) ) | 
						
							| 101 |  | raleq | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑧  ∈  𝑥 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 )  ↔  ∀ 𝑧  ∈  𝐴 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 ) ) ) | 
						
							| 102 | 101 | exbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑦 ∀ 𝑧  ∈  𝑥 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑧  ∈  𝐴 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 ) ) ) | 
						
							| 103 | 100 102 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( ∀ 𝑧  ∈  𝑥 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑥 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) )  →  ∃ 𝑦 ∀ 𝑧  ∈  𝑥 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 ) )  ↔  ( ( ∀ 𝑧  ∈  𝐴 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) )  →  ∃ 𝑦 ∀ 𝑧  ∈  𝐴 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 ) ) ) ) | 
						
							| 104 | 96 103 | spcv | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧  ∈  𝑥 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝑥 ∀ 𝑤  ∈  𝑥 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) )  →  ∃ 𝑦 ∀ 𝑧  ∈  𝑥 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 ) )  →  ( ( ∀ 𝑧  ∈  𝐴 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) )  →  ∃ 𝑦 ∀ 𝑧  ∈  𝐴 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 ) ) ) | 
						
							| 105 | 3 104 | sylbi | ⊢ ( 𝜑  →  ( ( ∀ 𝑧  ∈  𝐴 𝑧  ≠  ∅  ∧  ∀ 𝑧  ∈  𝐴 ∀ 𝑤  ∈  𝐴 ( 𝑧  ≠  𝑤  →  ( 𝑧  ∩  𝑤 )  =  ∅ ) )  →  ∃ 𝑦 ∀ 𝑧  ∈  𝐴 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 ) ) ) | 
						
							| 106 | 12 77 105 | mp2ani | ⊢ ( 𝜑  →  ∃ 𝑦 ∀ 𝑧  ∈  𝐴 ∃! 𝑣 𝑣  ∈  ( 𝑧  ∩  𝑦 ) ) |