| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfac8alem.2 | ⊢ 𝐹  =  recs ( 𝐺 ) | 
						
							| 2 |  | dfac8alem.3 | ⊢ 𝐺  =  ( 𝑓  ∈  V  ↦  ( 𝑔 ‘ ( 𝐴  ∖  ran  𝑓 ) ) ) | 
						
							| 3 |  | elex | ⊢ ( 𝐴  ∈  𝐶  →  𝐴  ∈  V ) | 
						
							| 4 |  | difss | ⊢ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ⊆  𝐴 | 
						
							| 5 |  | elpw2g | ⊢ ( 𝐴  ∈  V  →  ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ∈  𝒫  𝐴  ↔  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ⊆  𝐴 ) ) | 
						
							| 6 | 4 5 | mpbiri | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ∈  𝒫  𝐴 ) | 
						
							| 7 |  | neeq1 | ⊢ ( 𝑦  =  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  →  ( 𝑦  ≠  ∅  ↔  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅ ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  →  ( 𝑔 ‘ 𝑦 )  =  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 9 |  | id | ⊢ ( 𝑦  =  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  →  𝑦  =  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 10 | 8 9 | eleq12d | ⊢ ( 𝑦  =  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  →  ( ( 𝑔 ‘ 𝑦 )  ∈  𝑦  ↔  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 11 | 7 10 | imbi12d | ⊢ ( 𝑦  =  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  →  ( ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 )  ↔  ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 12 | 11 | rspcv | ⊢ ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ∈  𝒫  𝐴  →  ( ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 )  →  ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 13 | 6 12 | syl | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 )  →  ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 14 | 13 | 3imp | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 )  ∧  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅ )  →  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 15 | 1 | tfr2 | ⊢ ( 𝑥  ∈  On  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ ( 𝐹  ↾  𝑥 ) ) ) | 
						
							| 16 | 1 | tfr1 | ⊢ 𝐹  Fn  On | 
						
							| 17 |  | fnfun | ⊢ ( 𝐹  Fn  On  →  Fun  𝐹 ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ Fun  𝐹 | 
						
							| 19 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 20 |  | resfunexg | ⊢ ( ( Fun  𝐹  ∧  𝑥  ∈  V )  →  ( 𝐹  ↾  𝑥 )  ∈  V ) | 
						
							| 21 | 18 19 20 | mp2an | ⊢ ( 𝐹  ↾  𝑥 )  ∈  V | 
						
							| 22 |  | rneq | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ran  𝑓  =  ran  ( 𝐹  ↾  𝑥 ) ) | 
						
							| 23 |  | df-ima | ⊢ ( 𝐹  “  𝑥 )  =  ran  ( 𝐹  ↾  𝑥 ) | 
						
							| 24 | 22 23 | eqtr4di | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ran  𝑓  =  ( 𝐹  “  𝑥 ) ) | 
						
							| 25 | 24 | difeq2d | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ( 𝐴  ∖  ran  𝑓 )  =  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ( 𝑔 ‘ ( 𝐴  ∖  ran  𝑓 ) )  =  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 27 |  | fvex | ⊢ ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) )  ∈  V | 
						
							| 28 | 26 2 27 | fvmpt | ⊢ ( ( 𝐹  ↾  𝑥 )  ∈  V  →  ( 𝐺 ‘ ( 𝐹  ↾  𝑥 ) )  =  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 29 | 21 28 | ax-mp | ⊢ ( 𝐺 ‘ ( 𝐹  ↾  𝑥 ) )  =  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 30 | 15 29 | eqtrdi | ⊢ ( 𝑥  ∈  On  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 31 | 30 | eleq1d | ⊢ ( 𝑥  ∈  On  →  ( ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ↔  ( 𝑔 ‘ ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 32 | 14 31 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 )  ∧  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅ )  →  ( 𝑥  ∈  On  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 33 | 32 | 3expia | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 ) )  →  ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝑥  ∈  On  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 34 | 33 | com23 | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 ) )  →  ( 𝑥  ∈  On  →  ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 35 | 34 | ralrimiv | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 ) )  →  ∀ 𝑥  ∈  On ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 )  →  ∀ 𝑥  ∈  On ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) ) ) | 
						
							| 37 | 16 | tz7.49c | ⊢ ( ( 𝐴  ∈  V  ∧  ∀ 𝑥  ∈  On ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) ) )  →  ∃ 𝑥  ∈  On ( 𝐹  ↾  𝑥 ) : 𝑥 –1-1-onto→ 𝐴 ) | 
						
							| 38 | 37 | ex | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥  ∈  On ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) )  →  ∃ 𝑥  ∈  On ( 𝐹  ↾  𝑥 ) : 𝑥 –1-1-onto→ 𝐴 ) ) | 
						
							| 39 | 19 | f1oen | ⊢ ( ( 𝐹  ↾  𝑥 ) : 𝑥 –1-1-onto→ 𝐴  →  𝑥  ≈  𝐴 ) | 
						
							| 40 |  | isnumi | ⊢ ( ( 𝑥  ∈  On  ∧  𝑥  ≈  𝐴 )  →  𝐴  ∈  dom  card ) | 
						
							| 41 | 39 40 | sylan2 | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝐹  ↾  𝑥 ) : 𝑥 –1-1-onto→ 𝐴 )  →  𝐴  ∈  dom  card ) | 
						
							| 42 | 41 | rexlimiva | ⊢ ( ∃ 𝑥  ∈  On ( 𝐹  ↾  𝑥 ) : 𝑥 –1-1-onto→ 𝐴  →  𝐴  ∈  dom  card ) | 
						
							| 43 | 38 42 | syl6 | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥  ∈  On ( ( 𝐴  ∖  ( 𝐹  “  𝑥 ) )  ≠  ∅  →  ( 𝐹 ‘ 𝑥 )  ∈  ( 𝐴  ∖  ( 𝐹  “  𝑥 ) ) )  →  𝐴  ∈  dom  card ) ) | 
						
							| 44 | 36 43 | syld | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 )  →  𝐴  ∈  dom  card ) ) | 
						
							| 45 | 3 44 | syl | ⊢ ( 𝐴  ∈  𝐶  →  ( ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 )  →  𝐴  ∈  dom  card ) ) | 
						
							| 46 | 45 | exlimdv | ⊢ ( 𝐴  ∈  𝐶  →  ( ∃ 𝑔 ∀ 𝑦  ∈  𝒫  𝐴 ( 𝑦  ≠  ∅  →  ( 𝑔 ‘ 𝑦 )  ∈  𝑦 )  →  𝐴  ∈  dom  card ) ) |