Metamath Proof Explorer


Theorem dfac8c

Description: If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013)

Ref Expression
Assertion dfac8c ( 𝐴𝐵 → ( ∃ 𝑟 𝑟 We 𝐴 → ∃ 𝑓𝑧𝐴 ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ↦ ( 𝑦𝑥𝑤𝑥 ¬ 𝑤 𝑟 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ↦ ( 𝑦𝑥𝑤𝑥 ¬ 𝑤 𝑟 𝑦 ) )
2 1 dfac8clem ( 𝐴𝐵 → ( ∃ 𝑟 𝑟 We 𝐴 → ∃ 𝑓𝑧𝐴 ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) ) )