Metamath Proof Explorer
Description: If the union of a set is well-orderable, then the set has a choice
function. (Contributed by Mario Carneiro, 5-Jan-2013)
|
|
Ref |
Expression |
|
Assertion |
dfac8c |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑟 𝑟 We ∪ 𝐴 → ∃ 𝑓 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ↦ ( ℩ 𝑦 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ¬ 𝑤 𝑟 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ↦ ( ℩ 𝑦 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ¬ 𝑤 𝑟 𝑦 ) ) |
2 |
1
|
dfac8clem |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑟 𝑟 We ∪ 𝐴 → ∃ 𝑓 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |