Step |
Hyp |
Ref |
Expression |
1 |
|
dfac8clem.1 |
⊢ 𝐹 = ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ↦ ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
2 |
|
eldifsn |
⊢ ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ↔ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) |
3 |
|
elssuni |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ⊆ ∪ 𝐴 ) |
4 |
3
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → 𝑠 ⊆ ∪ 𝐴 ) |
5 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → 𝑟 We ∪ 𝐴 ) |
6 |
|
vex |
⊢ 𝑟 ∈ V |
7 |
|
exse2 |
⊢ ( 𝑟 ∈ V → 𝑟 Se ∪ 𝐴 ) |
8 |
6 7
|
mp1i |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → 𝑟 Se ∪ 𝐴 ) |
9 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → 𝑠 ≠ ∅ ) |
10 |
|
wereu2 |
⊢ ( ( ( 𝑟 We ∪ 𝐴 ∧ 𝑟 Se ∪ 𝐴 ) ∧ ( 𝑠 ⊆ ∪ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ∃! 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) |
11 |
5 8 4 9 10
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ∃! 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) |
12 |
|
riotacl |
⊢ ( ∃! 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 → ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ 𝑠 ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ 𝑠 ) |
14 |
4 13
|
sseldd |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ ∪ 𝐴 ) |
15 |
2 14
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ) → ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ ∪ 𝐴 ) |
16 |
15 1
|
fmptd |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → 𝐹 : ( 𝐴 ∖ { ∅ } ) ⟶ ∪ 𝐴 ) |
17 |
|
difexg |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∖ { ∅ } ) ∈ V ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ( 𝐴 ∖ { ∅ } ) ∈ V ) |
19 |
|
uniexg |
⊢ ( 𝐴 ∈ 𝐵 → ∪ 𝐴 ∈ V ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ∪ 𝐴 ∈ V ) |
21 |
|
fex2 |
⊢ ( ( 𝐹 : ( 𝐴 ∖ { ∅ } ) ⟶ ∪ 𝐴 ∧ ( 𝐴 ∖ { ∅ } ) ∈ V ∧ ∪ 𝐴 ∈ V ) → 𝐹 ∈ V ) |
22 |
16 18 20 21
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → 𝐹 ∈ V ) |
23 |
|
riotaex |
⊢ ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ V |
24 |
1
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ∧ ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ V ) → ( 𝐹 ‘ 𝑠 ) = ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
25 |
23 24
|
mpan2 |
⊢ ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) → ( 𝐹 ‘ 𝑠 ) = ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
26 |
2 25
|
sylbir |
⊢ ( ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) → ( 𝐹 ‘ 𝑠 ) = ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑠 ) = ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
28 |
27 13
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) |
29 |
28
|
expr |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) |
30 |
29
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ∀ 𝑠 ∈ 𝐴 ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) |
31 |
|
nfv |
⊢ Ⅎ 𝑠 𝑧 ≠ ∅ |
32 |
|
nfmpt1 |
⊢ Ⅎ 𝑠 ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ↦ ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
33 |
1 32
|
nfcxfr |
⊢ Ⅎ 𝑠 𝐹 |
34 |
|
nfcv |
⊢ Ⅎ 𝑠 𝑧 |
35 |
33 34
|
nffv |
⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑧 ) |
36 |
35
|
nfel1 |
⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 |
37 |
31 36
|
nfim |
⊢ Ⅎ 𝑠 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) |
38 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) |
39 |
|
neeq1 |
⊢ ( 𝑧 = 𝑠 → ( 𝑧 ≠ ∅ ↔ 𝑠 ≠ ∅ ) ) |
40 |
|
fveq2 |
⊢ ( 𝑧 = 𝑠 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑠 ) ) |
41 |
|
id |
⊢ ( 𝑧 = 𝑠 → 𝑧 = 𝑠 ) |
42 |
40 41
|
eleq12d |
⊢ ( 𝑧 = 𝑠 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) |
43 |
39 42
|
imbi12d |
⊢ ( 𝑧 = 𝑠 → ( ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) ) |
44 |
37 38 43
|
cbvralw |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) |
45 |
30 44
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
46 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
47 |
46
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
48 |
47
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
49 |
48
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
50 |
22 45 49
|
spcedv |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ∃ 𝑓 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
51 |
50
|
ex |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝑟 We ∪ 𝐴 → ∃ 𝑓 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
52 |
51
|
exlimdv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑟 𝑟 We ∪ 𝐴 → ∃ 𝑓 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |