Step |
Hyp |
Ref |
Expression |
1 |
|
dfac3 |
⊢ ( CHOICE ↔ ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
2 |
|
vex |
⊢ 𝑓 ∈ V |
3 |
2
|
rnex |
⊢ ran 𝑓 ∈ V |
4 |
|
raleq |
⊢ ( 𝑠 = ran 𝑓 → ( ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ↔ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ) |
5 |
4
|
exbidv |
⊢ ( 𝑠 = ran 𝑓 → ( ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ↔ ∃ 𝑔 ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ) |
6 |
3 5
|
spcv |
⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → ∃ 𝑔 ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
7 |
|
df-nel |
⊢ ( ∅ ∉ ran 𝑓 ↔ ¬ ∅ ∈ ran 𝑓 ) |
8 |
7
|
biimpi |
⊢ ( ∅ ∉ ran 𝑓 → ¬ ∅ ∈ ran 𝑓 ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ¬ ∅ ∈ ran 𝑓 ) |
10 |
|
fvelrn |
⊢ ( ( Fun 𝑓 ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
11 |
10
|
adantlr |
⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
12 |
|
eleq1 |
⊢ ( ( 𝑓 ‘ 𝑥 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ↔ ∅ ∈ ran 𝑓 ) ) |
13 |
11 12
|
syl5ibcom |
⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ( ( 𝑓 ‘ 𝑥 ) = ∅ → ∅ ∈ ran 𝑓 ) ) |
14 |
13
|
necon3bd |
⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ( ¬ ∅ ∈ ran 𝑓 → ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
15 |
9 14
|
mpd |
⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) |
16 |
15
|
adantlr |
⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) |
17 |
|
neeq1 |
⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → ( 𝑡 ≠ ∅ ↔ ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
18 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → ( 𝑔 ‘ 𝑡 ) = ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
19 |
|
id |
⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → 𝑡 = ( 𝑓 ‘ 𝑥 ) ) |
20 |
18 19
|
eleq12d |
⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ↔ ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
21 |
17 20
|
imbi12d |
⊢ ( 𝑡 = ( 𝑓 ‘ 𝑥 ) → ( ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ↔ ( ( 𝑓 ‘ 𝑥 ) ≠ ∅ → ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
22 |
|
simplr |
⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
23 |
10
|
ad4ant14 |
⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
24 |
21 22 23
|
rspcdva |
⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ( ( 𝑓 ‘ 𝑥 ) ≠ ∅ → ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
25 |
16 24
|
mpd |
⊢ ( ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ dom 𝑓 ) → ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
26 |
25
|
ralrimiva |
⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ dom 𝑓 ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
27 |
2
|
dmex |
⊢ dom 𝑓 ∈ V |
28 |
|
mptelixpg |
⊢ ( dom 𝑓 ∈ V → ( ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ dom 𝑓 ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
29 |
27 28
|
ax-mp |
⊢ ( ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ dom 𝑓 ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ∈ ( 𝑓 ‘ 𝑥 ) ) |
30 |
26 29
|
sylibr |
⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) → ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ∈ X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ) |
31 |
30
|
ne0d |
⊢ ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ∧ ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) |
32 |
31
|
ex |
⊢ ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → ( ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
33 |
32
|
exlimdv |
⊢ ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → ( ∃ 𝑔 ∀ 𝑡 ∈ ran 𝑓 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
34 |
6 33
|
syl5com |
⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
35 |
34
|
alrimiv |
⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) → ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
36 |
|
fnresi |
⊢ ( I ↾ ( 𝑠 ∖ { ∅ } ) ) Fn ( 𝑠 ∖ { ∅ } ) |
37 |
|
fnfun |
⊢ ( ( I ↾ ( 𝑠 ∖ { ∅ } ) ) Fn ( 𝑠 ∖ { ∅ } ) → Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ) |
38 |
36 37
|
ax-mp |
⊢ Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) |
39 |
|
neldifsn |
⊢ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) |
40 |
|
vex |
⊢ 𝑠 ∈ V |
41 |
40
|
difexi |
⊢ ( 𝑠 ∖ { ∅ } ) ∈ V |
42 |
|
resiexg |
⊢ ( ( 𝑠 ∖ { ∅ } ) ∈ V → ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∈ V ) |
43 |
41 42
|
ax-mp |
⊢ ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∈ V |
44 |
|
funeq |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( Fun 𝑓 ↔ Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ) ) |
45 |
|
rneq |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ran 𝑓 = ran ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ) |
46 |
|
rnresi |
⊢ ran ( I ↾ ( 𝑠 ∖ { ∅ } ) ) = ( 𝑠 ∖ { ∅ } ) |
47 |
45 46
|
eqtrdi |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ran 𝑓 = ( 𝑠 ∖ { ∅ } ) ) |
48 |
47
|
eleq2d |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ∅ ∈ ran 𝑓 ↔ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) ) |
49 |
48
|
notbid |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ¬ ∅ ∈ ran 𝑓 ↔ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) ) |
50 |
7 49
|
syl5bb |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ∅ ∉ ran 𝑓 ↔ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) ) |
51 |
44 50
|
anbi12d |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) ↔ ( Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∧ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) ) ) |
52 |
|
dmeq |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → dom 𝑓 = dom ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ) |
53 |
|
dmresi |
⊢ dom ( I ↾ ( 𝑠 ∖ { ∅ } ) ) = ( 𝑠 ∖ { ∅ } ) |
54 |
52 53
|
eqtrdi |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → dom 𝑓 = ( 𝑠 ∖ { ∅ } ) ) |
55 |
54
|
ixpeq1d |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) ) |
56 |
|
fveq1 |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ‘ 𝑥 ) ) |
57 |
|
fvresi |
⊢ ( 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) → ( ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ‘ 𝑥 ) = 𝑥 ) |
58 |
56 57
|
sylan9eq |
⊢ ( ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∧ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ) → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) |
59 |
58
|
ixpeq2dva |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑓 ‘ 𝑥 ) = X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ) |
60 |
55 59
|
eqtrd |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) = X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ) |
61 |
60
|
neeq1d |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ↔ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ) ) |
62 |
51 61
|
imbi12d |
⊢ ( 𝑓 = ( I ↾ ( 𝑠 ∖ { ∅ } ) ) → ( ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ↔ ( ( Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∧ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ) ) ) |
63 |
43 62
|
spcv |
⊢ ( ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) → ( ( Fun ( I ↾ ( 𝑠 ∖ { ∅ } ) ) ∧ ¬ ∅ ∈ ( 𝑠 ∖ { ∅ } ) ) → X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ) ) |
64 |
38 39 63
|
mp2ani |
⊢ ( ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) → X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ) |
65 |
|
n0 |
⊢ ( X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ) |
66 |
|
vex |
⊢ 𝑔 ∈ V |
67 |
66
|
elixp |
⊢ ( 𝑔 ∈ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ↔ ( 𝑔 Fn ( 𝑠 ∖ { ∅ } ) ∧ ∀ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
68 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝑠 ∧ 𝑥 ≠ ∅ ) ) |
69 |
68
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝑠 ∧ 𝑥 ≠ ∅ ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
70 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝑠 ∧ 𝑥 ≠ ∅ ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝑠 → ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
71 |
69 70
|
bitri |
⊢ ( ( 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝑠 → ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
72 |
71
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ↔ ∀ 𝑥 ∈ 𝑠 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ) |
73 |
|
neeq1 |
⊢ ( 𝑥 = 𝑡 → ( 𝑥 ≠ ∅ ↔ 𝑡 ≠ ∅ ) ) |
74 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑡 ) ) |
75 |
|
id |
⊢ ( 𝑥 = 𝑡 → 𝑥 = 𝑡 ) |
76 |
74 75
|
eleq12d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ↔ ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
77 |
73 76
|
imbi12d |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) ) |
78 |
77
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑠 ( 𝑥 ≠ ∅ → ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
79 |
72 78
|
bitri |
⊢ ( ∀ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 ↔ ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
80 |
79
|
biimpi |
⊢ ( ∀ 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) ( 𝑔 ‘ 𝑥 ) ∈ 𝑥 → ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
81 |
67 80
|
simplbiim |
⊢ ( 𝑔 ∈ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 → ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
82 |
81
|
eximi |
⊢ ( ∃ 𝑔 𝑔 ∈ X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 → ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
83 |
65 82
|
sylbi |
⊢ ( X 𝑥 ∈ ( 𝑠 ∖ { ∅ } ) 𝑥 ≠ ∅ → ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
84 |
64 83
|
syl |
⊢ ( ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) → ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
85 |
84
|
alrimiv |
⊢ ( ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) → ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ) |
86 |
35 85
|
impbii |
⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡 ∈ 𝑠 ( 𝑡 ≠ ∅ → ( 𝑔 ‘ 𝑡 ) ∈ 𝑡 ) ↔ ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |
87 |
1 86
|
bitri |
⊢ ( CHOICE ↔ ∀ 𝑓 ( ( Fun 𝑓 ∧ ∅ ∉ ran 𝑓 ) → X 𝑥 ∈ dom 𝑓 ( 𝑓 ‘ 𝑥 ) ≠ ∅ ) ) |