| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfac3 | ⊢ ( CHOICE  ↔  ∀ 𝑠 ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 2 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 3 | 2 | rnex | ⊢ ran  𝑓  ∈  V | 
						
							| 4 |  | raleq | ⊢ ( 𝑠  =  ran  𝑓  →  ( ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 )  ↔  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) ) | 
						
							| 5 | 4 | exbidv | ⊢ ( 𝑠  =  ran  𝑓  →  ( ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 )  ↔  ∃ 𝑔 ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) ) | 
						
							| 6 | 3 5 | spcv | ⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 )  →  ∃ 𝑔 ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 7 |  | df-nel | ⊢ ( ∅  ∉  ran  𝑓  ↔  ¬  ∅  ∈  ran  𝑓 ) | 
						
							| 8 | 7 | biimpi | ⊢ ( ∅  ∉  ran  𝑓  →  ¬  ∅  ∈  ran  𝑓 ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  𝑥  ∈  dom  𝑓 )  →  ¬  ∅  ∈  ran  𝑓 ) | 
						
							| 10 |  | fvelrn | ⊢ ( ( Fun  𝑓  ∧  𝑥  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ran  𝑓 ) | 
						
							| 11 | 10 | adantlr | ⊢ ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  𝑥  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ran  𝑓 ) | 
						
							| 12 |  | eleq1 | ⊢ ( ( 𝑓 ‘ 𝑥 )  =  ∅  →  ( ( 𝑓 ‘ 𝑥 )  ∈  ran  𝑓  ↔  ∅  ∈  ran  𝑓 ) ) | 
						
							| 13 | 11 12 | syl5ibcom | ⊢ ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  𝑥  ∈  dom  𝑓 )  →  ( ( 𝑓 ‘ 𝑥 )  =  ∅  →  ∅  ∈  ran  𝑓 ) ) | 
						
							| 14 | 13 | necon3bd | ⊢ ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  𝑥  ∈  dom  𝑓 )  →  ( ¬  ∅  ∈  ran  𝑓  →  ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 15 | 9 14 | mpd | ⊢ ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  𝑥  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) | 
						
							| 16 | 15 | adantlr | ⊢ ( ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) )  ∧  𝑥  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) | 
						
							| 17 |  | neeq1 | ⊢ ( 𝑡  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑡  ≠  ∅  ↔  ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑡  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑔 ‘ 𝑡 )  =  ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 19 |  | id | ⊢ ( 𝑡  =  ( 𝑓 ‘ 𝑥 )  →  𝑡  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 20 | 18 19 | eleq12d | ⊢ ( 𝑡  =  ( 𝑓 ‘ 𝑥 )  →  ( ( 𝑔 ‘ 𝑡 )  ∈  𝑡  ↔  ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 21 | 17 20 | imbi12d | ⊢ ( 𝑡  =  ( 𝑓 ‘ 𝑥 )  →  ( ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 )  ↔  ( ( 𝑓 ‘ 𝑥 )  ≠  ∅  →  ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 22 |  | simplr | ⊢ ( ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) )  ∧  𝑥  ∈  dom  𝑓 )  →  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 23 | 10 | ad4ant14 | ⊢ ( ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) )  ∧  𝑥  ∈  dom  𝑓 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ran  𝑓 ) | 
						
							| 24 | 21 22 23 | rspcdva | ⊢ ( ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) )  ∧  𝑥  ∈  dom  𝑓 )  →  ( ( 𝑓 ‘ 𝑥 )  ≠  ∅  →  ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 25 | 16 24 | mpd | ⊢ ( ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) )  ∧  𝑥  ∈  dom  𝑓 )  →  ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 26 | 25 | ralrimiva | ⊢ ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) )  →  ∀ 𝑥  ∈  dom  𝑓 ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 27 | 2 | dmex | ⊢ dom  𝑓  ∈  V | 
						
							| 28 |  | mptelixpg | ⊢ ( dom  𝑓  ∈  V  →  ( ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) )  ∈  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  dom  𝑓 ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ ( ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) )  ∈  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  dom  𝑓 ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) )  ∈  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 30 | 26 29 | sylibr | ⊢ ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) )  →  ( 𝑥  ∈  dom  𝑓  ↦  ( 𝑔 ‘ ( 𝑓 ‘ 𝑥 ) ) )  ∈  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 31 | 30 | ne0d | ⊢ ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ∧  ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) | 
						
							| 32 | 31 | ex | ⊢ ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  ( ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 33 | 32 | exlimdv | ⊢ ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  ( ∃ 𝑔 ∀ 𝑡  ∈  ran  𝑓 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 34 | 6 33 | syl5com | ⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 )  →  ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 35 | 34 | alrimiv | ⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 )  →  ∀ 𝑓 ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 36 |  | fnresi | ⊢ (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  Fn  ( 𝑠  ∖  { ∅ } ) | 
						
							| 37 |  | fnfun | ⊢ ( (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  Fn  ( 𝑠  ∖  { ∅ } )  →  Fun  (  I   ↾  ( 𝑠  ∖  { ∅ } ) ) ) | 
						
							| 38 | 36 37 | ax-mp | ⊢ Fun  (  I   ↾  ( 𝑠  ∖  { ∅ } ) ) | 
						
							| 39 |  | neldifsn | ⊢ ¬  ∅  ∈  ( 𝑠  ∖  { ∅ } ) | 
						
							| 40 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 41 | 40 | difexi | ⊢ ( 𝑠  ∖  { ∅ } )  ∈  V | 
						
							| 42 |  | resiexg | ⊢ ( ( 𝑠  ∖  { ∅ } )  ∈  V  →  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  ∈  V ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  ∈  V | 
						
							| 44 |  | funeq | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ( Fun  𝑓  ↔  Fun  (  I   ↾  ( 𝑠  ∖  { ∅ } ) ) ) ) | 
						
							| 45 |  | rneq | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ran  𝑓  =  ran  (  I   ↾  ( 𝑠  ∖  { ∅ } ) ) ) | 
						
							| 46 |  | rnresi | ⊢ ran  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  =  ( 𝑠  ∖  { ∅ } ) | 
						
							| 47 | 45 46 | eqtrdi | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ran  𝑓  =  ( 𝑠  ∖  { ∅ } ) ) | 
						
							| 48 | 47 | eleq2d | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ( ∅  ∈  ran  𝑓  ↔  ∅  ∈  ( 𝑠  ∖  { ∅ } ) ) ) | 
						
							| 49 | 48 | notbid | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ( ¬  ∅  ∈  ran  𝑓  ↔  ¬  ∅  ∈  ( 𝑠  ∖  { ∅ } ) ) ) | 
						
							| 50 | 7 49 | bitrid | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ( ∅  ∉  ran  𝑓  ↔  ¬  ∅  ∈  ( 𝑠  ∖  { ∅ } ) ) ) | 
						
							| 51 | 44 50 | anbi12d | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  ↔  ( Fun  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  ∧  ¬  ∅  ∈  ( 𝑠  ∖  { ∅ } ) ) ) ) | 
						
							| 52 |  | dmeq | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  dom  𝑓  =  dom  (  I   ↾  ( 𝑠  ∖  { ∅ } ) ) ) | 
						
							| 53 |  | dmresi | ⊢ dom  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  =  ( 𝑠  ∖  { ∅ } ) | 
						
							| 54 | 52 53 | eqtrdi | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  dom  𝑓  =  ( 𝑠  ∖  { ∅ } ) ) | 
						
							| 55 | 54 | ixpeq1d | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  =  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 56 |  | fveq1 | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ( 𝑓 ‘ 𝑥 )  =  ( (  I   ↾  ( 𝑠  ∖  { ∅ } ) ) ‘ 𝑥 ) ) | 
						
							| 57 |  | fvresi | ⊢ ( 𝑥  ∈  ( 𝑠  ∖  { ∅ } )  →  ( (  I   ↾  ( 𝑠  ∖  { ∅ } ) ) ‘ 𝑥 )  =  𝑥 ) | 
						
							| 58 | 56 57 | sylan9eq | ⊢ ( ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  ∧  𝑥  ∈  ( 𝑠  ∖  { ∅ } ) )  →  ( 𝑓 ‘ 𝑥 )  =  𝑥 ) | 
						
							| 59 | 58 | ixpeq2dva | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) ( 𝑓 ‘ 𝑥 )  =  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥 ) | 
						
							| 60 | 55 59 | eqtrd | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  =  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥 ) | 
						
							| 61 | 60 | neeq1d | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ( X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅  ↔  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥  ≠  ∅ ) ) | 
						
							| 62 | 51 61 | imbi12d | ⊢ ( 𝑓  =  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  →  ( ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ )  ↔  ( ( Fun  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  ∧  ¬  ∅  ∈  ( 𝑠  ∖  { ∅ } ) )  →  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥  ≠  ∅ ) ) ) | 
						
							| 63 | 43 62 | spcv | ⊢ ( ∀ 𝑓 ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ )  →  ( ( Fun  (  I   ↾  ( 𝑠  ∖  { ∅ } ) )  ∧  ¬  ∅  ∈  ( 𝑠  ∖  { ∅ } ) )  →  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥  ≠  ∅ ) ) | 
						
							| 64 | 38 39 63 | mp2ani | ⊢ ( ∀ 𝑓 ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ )  →  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥  ≠  ∅ ) | 
						
							| 65 |  | n0 | ⊢ ( X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥  ≠  ∅  ↔  ∃ 𝑔 𝑔  ∈  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥 ) | 
						
							| 66 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 67 | 66 | elixp | ⊢ ( 𝑔  ∈  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥  ↔  ( 𝑔  Fn  ( 𝑠  ∖  { ∅ } )  ∧  ∀ 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) ( 𝑔 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 68 |  | eldifsn | ⊢ ( 𝑥  ∈  ( 𝑠  ∖  { ∅ } )  ↔  ( 𝑥  ∈  𝑠  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 69 | 68 | imbi1i | ⊢ ( ( 𝑥  ∈  ( 𝑠  ∖  { ∅ } )  →  ( 𝑔 ‘ 𝑥 )  ∈  𝑥 )  ↔  ( ( 𝑥  ∈  𝑠  ∧  𝑥  ≠  ∅ )  →  ( 𝑔 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 70 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝑠  ∧  𝑥  ≠  ∅ )  →  ( 𝑔 ‘ 𝑥 )  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑠  →  ( 𝑥  ≠  ∅  →  ( 𝑔 ‘ 𝑥 )  ∈  𝑥 ) ) ) | 
						
							| 71 | 69 70 | bitri | ⊢ ( ( 𝑥  ∈  ( 𝑠  ∖  { ∅ } )  →  ( 𝑔 ‘ 𝑥 )  ∈  𝑥 )  ↔  ( 𝑥  ∈  𝑠  →  ( 𝑥  ≠  ∅  →  ( 𝑔 ‘ 𝑥 )  ∈  𝑥 ) ) ) | 
						
							| 72 | 71 | ralbii2 | ⊢ ( ∀ 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) ( 𝑔 ‘ 𝑥 )  ∈  𝑥  ↔  ∀ 𝑥  ∈  𝑠 ( 𝑥  ≠  ∅  →  ( 𝑔 ‘ 𝑥 )  ∈  𝑥 ) ) | 
						
							| 73 |  | neeq1 | ⊢ ( 𝑥  =  𝑡  →  ( 𝑥  ≠  ∅  ↔  𝑡  ≠  ∅ ) ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( 𝑔 ‘ 𝑥 )  =  ( 𝑔 ‘ 𝑡 ) ) | 
						
							| 75 |  | id | ⊢ ( 𝑥  =  𝑡  →  𝑥  =  𝑡 ) | 
						
							| 76 | 74 75 | eleq12d | ⊢ ( 𝑥  =  𝑡  →  ( ( 𝑔 ‘ 𝑥 )  ∈  𝑥  ↔  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 77 | 73 76 | imbi12d | ⊢ ( 𝑥  =  𝑡  →  ( ( 𝑥  ≠  ∅  →  ( 𝑔 ‘ 𝑥 )  ∈  𝑥 )  ↔  ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) ) | 
						
							| 78 | 77 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝑠 ( 𝑥  ≠  ∅  →  ( 𝑔 ‘ 𝑥 )  ∈  𝑥 )  ↔  ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 79 | 72 78 | bitri | ⊢ ( ∀ 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) ( 𝑔 ‘ 𝑥 )  ∈  𝑥  ↔  ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 80 | 79 | biimpi | ⊢ ( ∀ 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) ( 𝑔 ‘ 𝑥 )  ∈  𝑥  →  ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 81 | 67 80 | simplbiim | ⊢ ( 𝑔  ∈  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥  →  ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 82 | 81 | eximi | ⊢ ( ∃ 𝑔 𝑔  ∈  X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥  →  ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 83 | 65 82 | sylbi | ⊢ ( X 𝑥  ∈  ( 𝑠  ∖  { ∅ } ) 𝑥  ≠  ∅  →  ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 84 | 64 83 | syl | ⊢ ( ∀ 𝑓 ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ )  →  ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 85 | 84 | alrimiv | ⊢ ( ∀ 𝑓 ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ )  →  ∀ 𝑠 ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 ) ) | 
						
							| 86 | 35 85 | impbii | ⊢ ( ∀ 𝑠 ∃ 𝑔 ∀ 𝑡  ∈  𝑠 ( 𝑡  ≠  ∅  →  ( 𝑔 ‘ 𝑡 )  ∈  𝑡 )  ↔  ∀ 𝑓 ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 87 | 1 86 | bitri | ⊢ ( CHOICE  ↔  ∀ 𝑓 ( ( Fun  𝑓  ∧  ∅  ∉  ran  𝑓 )  →  X 𝑥  ∈  dom  𝑓 ( 𝑓 ‘ 𝑥 )  ≠  ∅ ) ) |