| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-adjh | ⊢ adjℎ  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) ) } | 
						
							| 2 |  | eqcom | ⊢ ( ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) )  ↔  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 3 | 2 | 2ralbii | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) | 
						
							| 4 |  | adjsym | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) )  =  ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 5 | 3 4 | bitr4id | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ )  →  ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 6 | 5 | pm5.32i | ⊢ ( ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) )  ↔  ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 7 |  | df-3an | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) )  ↔  ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) ) ) | 
						
							| 8 |  | df-3an | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) )  ↔  ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 9 | 6 7 8 | 3bitr4i | ⊢ ( ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) )  ↔  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) ) | 
						
							| 10 | 9 | opabbii | ⊢ { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( 𝑡 ‘ 𝑥 )  ·ih  𝑦 )  =  ( 𝑥  ·ih  ( 𝑢 ‘ 𝑦 ) ) ) }  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } | 
						
							| 11 | 1 10 | eqtri | ⊢ adjℎ  =  { 〈 𝑡 ,  𝑢 〉  ∣  ( 𝑡 :  ℋ ⟶  ℋ  ∧  𝑢 :  ℋ ⟶  ℋ  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑡 ‘ 𝑦 ) )  =  ( ( 𝑢 ‘ 𝑥 )  ·ih  𝑦 ) ) } |