| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-bi |
⊢ ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) |
| 2 |
|
ax-1 |
⊢ ( 𝜒 → ( 𝜃 → 𝜒 ) ) |
| 3 |
|
ax-1 |
⊢ ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) ) |
| 4 |
|
df-bi |
⊢ ¬ ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) |
| 5 |
|
ax-1 |
⊢ ( ¬ ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) → ( ¬ ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) → ¬ ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( ¬ ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) → ¬ ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) ) |
| 7 |
|
ax-3 |
⊢ ( ( ¬ ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) → ¬ ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) ) → ( ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) |
| 9 |
|
ax-1 |
⊢ ( ( ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) → ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ( ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ( ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) ) |
| 11 |
|
ax-2 |
⊢ ( ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ( ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) ) → ( ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) ) → ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ( ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) → ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) ) → ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) ) |
| 13 |
3 12
|
ax-mp |
⊢ ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) |
| 14 |
|
ax-3 |
⊢ ( ( ¬ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) → ¬ ( 𝜒 → ( 𝜃 → 𝜒 ) ) ) → ( ( 𝜒 → ( 𝜃 → 𝜒 ) ) → ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( ( 𝜒 → ( 𝜃 → 𝜒 ) ) → ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) |
| 16 |
2 15
|
ax-mp |
⊢ ( ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) |
| 17 |
1 16
|
ax-mp |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) |