Metamath Proof Explorer


Theorem dfbi3

Description: An alternate definition of the biconditional. Theorem *5.23 of WhiteheadRussell p. 124. (Contributed by NM, 27-Jun-2002) (Proof shortened by Wolf Lammen, 3-Nov-2013) (Proof shortened by NM, 29-Oct-2021)

Ref Expression
Assertion dfbi3 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 con34b ( ( 𝜓𝜑 ) ↔ ( ¬ 𝜑 → ¬ 𝜓 ) )
2 1 anbi2i ( ( ( 𝜑𝜓 ) ∧ ( 𝜓𝜑 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑 → ¬ 𝜓 ) ) )
3 dfbi2 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ ( 𝜓𝜑 ) ) )
4 cases2 ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑𝜓 ) ∧ ( ¬ 𝜑 → ¬ 𝜓 ) ) )
5 2 3 4 3bitr4i ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) )