Description: An alternate definition of the biconditional. Theorem *5.23 of WhiteheadRussell p. 124. (Contributed by NM, 27-Jun-2002) (Proof shortened by Wolf Lammen, 3-Nov-2013) (Proof shortened by NM, 29-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfbi3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con34b | ⊢ ( ( 𝜓 → 𝜑 ) ↔ ( ¬ 𝜑 → ¬ 𝜓 ) ) | |
2 | 1 | anbi2i | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → ¬ 𝜓 ) ) ) |
3 | dfbi2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) | |
4 | cases2 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → ¬ 𝜓 ) ) ) | |
5 | 2 3 4 | 3bitr4i | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) |