| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ceil | ⊢ ⌈  =  ( 𝑥  ∈  ℝ  ↦  - ( ⌊ ‘ - 𝑥 ) ) | 
						
							| 2 |  | zre | ⊢ ( 𝑧  ∈  ℤ  →  𝑧  ∈  ℝ ) | 
						
							| 3 |  | lenegcon2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑥  ≤  - 𝑧  ↔  𝑧  ≤  - 𝑥 ) ) | 
						
							| 4 |  | peano2re | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  +  1 )  ∈  ℝ ) | 
						
							| 5 | 4 | anim1ci | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑧  ∈  ℝ  ∧  ( 𝑥  +  1 )  ∈  ℝ ) ) | 
						
							| 6 |  | ltnegcon1 | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( 𝑥  +  1 )  ∈  ℝ )  →  ( - 𝑧  <  ( 𝑥  +  1 )  ↔  - ( 𝑥  +  1 )  <  𝑧 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( - 𝑧  <  ( 𝑥  +  1 )  ↔  - ( 𝑥  +  1 )  <  𝑧 ) ) | 
						
							| 8 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 9 |  | 1cnd | ⊢ ( 𝑥  ∈  ℝ  →  1  ∈  ℂ ) | 
						
							| 10 | 8 9 | negdid | ⊢ ( 𝑥  ∈  ℝ  →  - ( 𝑥  +  1 )  =  ( - 𝑥  +  - 1 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  - ( 𝑥  +  1 )  =  ( - 𝑥  +  - 1 ) ) | 
						
							| 12 | 11 | breq1d | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( - ( 𝑥  +  1 )  <  𝑧  ↔  ( - 𝑥  +  - 1 )  <  𝑧 ) ) | 
						
							| 13 |  | renegcl | ⊢ ( 𝑥  ∈  ℝ  →  - 𝑥  ∈  ℝ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  - 𝑥  ∈  ℝ ) | 
						
							| 15 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  - 1  ∈  ℝ ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  𝑧  ∈  ℝ ) | 
						
							| 18 | 14 16 17 | ltaddsubd | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ( - 𝑥  +  - 1 )  <  𝑧  ↔  - 𝑥  <  ( 𝑧  −  - 1 ) ) ) | 
						
							| 19 |  | recn | ⊢ ( 𝑧  ∈  ℝ  →  𝑧  ∈  ℂ ) | 
						
							| 20 |  | 1cnd | ⊢ ( 𝑧  ∈  ℝ  →  1  ∈  ℂ ) | 
						
							| 21 | 19 20 | subnegd | ⊢ ( 𝑧  ∈  ℝ  →  ( 𝑧  −  - 1 )  =  ( 𝑧  +  1 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑧  −  - 1 )  =  ( 𝑧  +  1 ) ) | 
						
							| 23 | 22 | breq2d | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( - 𝑥  <  ( 𝑧  −  - 1 )  ↔  - 𝑥  <  ( 𝑧  +  1 ) ) ) | 
						
							| 24 | 18 23 | bitrd | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ( - 𝑥  +  - 1 )  <  𝑧  ↔  - 𝑥  <  ( 𝑧  +  1 ) ) ) | 
						
							| 25 | 7 12 24 | 3bitrd | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( - 𝑧  <  ( 𝑥  +  1 )  ↔  - 𝑥  <  ( 𝑧  +  1 ) ) ) | 
						
							| 26 | 3 25 | anbi12d | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑥  ≤  - 𝑧  ∧  - 𝑧  <  ( 𝑥  +  1 ) )  ↔  ( 𝑧  ≤  - 𝑥  ∧  - 𝑥  <  ( 𝑧  +  1 ) ) ) ) | 
						
							| 27 | 2 26 | sylan2 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑧  ∈  ℤ )  →  ( ( 𝑥  ≤  - 𝑧  ∧  - 𝑧  <  ( 𝑥  +  1 ) )  ↔  ( 𝑧  ≤  - 𝑥  ∧  - 𝑥  <  ( 𝑧  +  1 ) ) ) ) | 
						
							| 28 | 27 | riotabidva | ⊢ ( 𝑥  ∈  ℝ  →  ( ℩ 𝑧  ∈  ℤ ( 𝑥  ≤  - 𝑧  ∧  - 𝑧  <  ( 𝑥  +  1 ) ) )  =  ( ℩ 𝑧  ∈  ℤ ( 𝑧  ≤  - 𝑥  ∧  - 𝑥  <  ( 𝑧  +  1 ) ) ) ) | 
						
							| 29 | 28 | negeqd | ⊢ ( 𝑥  ∈  ℝ  →  - ( ℩ 𝑧  ∈  ℤ ( 𝑥  ≤  - 𝑧  ∧  - 𝑧  <  ( 𝑥  +  1 ) ) )  =  - ( ℩ 𝑧  ∈  ℤ ( 𝑧  ≤  - 𝑥  ∧  - 𝑥  <  ( 𝑧  +  1 ) ) ) ) | 
						
							| 30 |  | zbtwnre | ⊢ ( 𝑥  ∈  ℝ  →  ∃! 𝑦  ∈  ℤ ( 𝑥  ≤  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) ) ) | 
						
							| 31 |  | breq2 | ⊢ ( 𝑦  =  - 𝑧  →  ( 𝑥  ≤  𝑦  ↔  𝑥  ≤  - 𝑧 ) ) | 
						
							| 32 |  | breq1 | ⊢ ( 𝑦  =  - 𝑧  →  ( 𝑦  <  ( 𝑥  +  1 )  ↔  - 𝑧  <  ( 𝑥  +  1 ) ) ) | 
						
							| 33 | 31 32 | anbi12d | ⊢ ( 𝑦  =  - 𝑧  →  ( ( 𝑥  ≤  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) )  ↔  ( 𝑥  ≤  - 𝑧  ∧  - 𝑧  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 34 | 33 | zriotaneg | ⊢ ( ∃! 𝑦  ∈  ℤ ( 𝑥  ≤  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) )  →  ( ℩ 𝑦  ∈  ℤ ( 𝑥  ≤  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) ) )  =  - ( ℩ 𝑧  ∈  ℤ ( 𝑥  ≤  - 𝑧  ∧  - 𝑧  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 35 | 30 34 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ( ℩ 𝑦  ∈  ℤ ( 𝑥  ≤  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) ) )  =  - ( ℩ 𝑧  ∈  ℤ ( 𝑥  ≤  - 𝑧  ∧  - 𝑧  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 36 |  | flval | ⊢ ( - 𝑥  ∈  ℝ  →  ( ⌊ ‘ - 𝑥 )  =  ( ℩ 𝑧  ∈  ℤ ( 𝑧  ≤  - 𝑥  ∧  - 𝑥  <  ( 𝑧  +  1 ) ) ) ) | 
						
							| 37 | 13 36 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ - 𝑥 )  =  ( ℩ 𝑧  ∈  ℤ ( 𝑧  ≤  - 𝑥  ∧  - 𝑥  <  ( 𝑧  +  1 ) ) ) ) | 
						
							| 38 | 37 | negeqd | ⊢ ( 𝑥  ∈  ℝ  →  - ( ⌊ ‘ - 𝑥 )  =  - ( ℩ 𝑧  ∈  ℤ ( 𝑧  ≤  - 𝑥  ∧  - 𝑥  <  ( 𝑧  +  1 ) ) ) ) | 
						
							| 39 | 29 35 38 | 3eqtr4rd | ⊢ ( 𝑥  ∈  ℝ  →  - ( ⌊ ‘ - 𝑥 )  =  ( ℩ 𝑦  ∈  ℤ ( 𝑥  ≤  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 40 | 39 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ  ↦  - ( ⌊ ‘ - 𝑥 ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ℩ 𝑦  ∈  ℤ ( 𝑥  ≤  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) ) ) ) | 
						
							| 41 | 1 40 | eqtri | ⊢ ⌈  =  ( 𝑥  ∈  ℝ  ↦  ( ℩ 𝑦  ∈  ℤ ( 𝑥  ≤  𝑦  ∧  𝑦  <  ( 𝑥  +  1 ) ) ) ) |