| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chss |
⊢ ( 𝑥 ∈ Cℋ → 𝑥 ⊆ ℋ ) |
| 2 |
|
ococ |
⊢ ( 𝑥 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) |
| 3 |
1 2
|
jca |
⊢ ( 𝑥 ∈ Cℋ → ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 4 |
|
occl |
⊢ ( 𝑥 ⊆ ℋ → ( ⊥ ‘ 𝑥 ) ∈ Cℋ ) |
| 5 |
|
chss |
⊢ ( ( ⊥ ‘ 𝑥 ) ∈ Cℋ → ( ⊥ ‘ 𝑥 ) ⊆ ℋ ) |
| 6 |
|
occl |
⊢ ( ( ⊥ ‘ 𝑥 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ Cℋ ) |
| 7 |
4 5 6
|
3syl |
⊢ ( 𝑥 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ Cℋ ) |
| 8 |
|
eleq1 |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ∈ Cℋ ↔ 𝑥 ∈ Cℋ ) ) |
| 9 |
7 8
|
imbitrid |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 → ( 𝑥 ⊆ ℋ → 𝑥 ∈ Cℋ ) ) |
| 10 |
9
|
impcom |
⊢ ( ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) → 𝑥 ∈ Cℋ ) |
| 11 |
3 10
|
impbii |
⊢ ( 𝑥 ∈ Cℋ ↔ ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 12 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ ) |
| 13 |
12
|
anbi1i |
⊢ ( ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ↔ ( 𝑥 ⊆ ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 14 |
11 13
|
bitr4i |
⊢ ( 𝑥 ∈ Cℋ ↔ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 15 |
14
|
eqabi |
⊢ Cℋ = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) } |
| 16 |
|
df-rab |
⊢ { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 ℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) } |
| 17 |
15 16
|
eqtr4i |
⊢ Cℋ = { 𝑥 ∈ 𝒫 ℋ ∣ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 } |