Metamath Proof Explorer


Theorem dfclnbgr3

Description: Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval ). (Contributed by AV, 8-May-2025)

Ref Expression
Hypotheses dfclnbgr3.v 𝑉 = ( Vtx ‘ 𝐺 )
dfclnbgr3.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion dfclnbgr3 ( ( 𝑁𝑉 ∧ Fun 𝐼 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼𝑖 ) } ) )

Proof

Step Hyp Ref Expression
1 dfclnbgr3.v 𝑉 = ( Vtx ‘ 𝐺 )
2 dfclnbgr3.i 𝐼 = ( iEdg ‘ 𝐺 )
3 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
4 3 eqcomi ran ( iEdg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
5 1 4 clnbgrval ( 𝑁𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) )
6 5 adantr ( ( 𝑁𝑉 ∧ Fun 𝐼 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) )
7 2 eqcomi ( iEdg ‘ 𝐺 ) = 𝐼
8 7 rneqi ran ( iEdg ‘ 𝐺 ) = ran 𝐼
9 8 rexeqi ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ran 𝐼 { 𝑁 , 𝑛 } ⊆ 𝑒 )
10 funfn ( Fun 𝐼𝐼 Fn dom 𝐼 )
11 10 biimpi ( Fun 𝐼𝐼 Fn dom 𝐼 )
12 11 adantl ( ( 𝑁𝑉 ∧ Fun 𝐼 ) → 𝐼 Fn dom 𝐼 )
13 sseq2 ( 𝑒 = ( 𝐼𝑖 ) → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑛 } ⊆ ( 𝐼𝑖 ) ) )
14 13 rexrn ( 𝐼 Fn dom 𝐼 → ( ∃ 𝑒 ∈ ran 𝐼 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼𝑖 ) ) )
15 12 14 syl ( ( 𝑁𝑉 ∧ Fun 𝐼 ) → ( ∃ 𝑒 ∈ ran 𝐼 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼𝑖 ) ) )
16 9 15 bitrid ( ( 𝑁𝑉 ∧ Fun 𝐼 ) → ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼𝑖 ) ) )
17 16 rabbidv ( ( 𝑁𝑉 ∧ Fun 𝐼 ) → { 𝑛𝑉 ∣ ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } = { 𝑛𝑉 ∣ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼𝑖 ) } )
18 17 uneq2d ( ( 𝑁𝑉 ∧ Fun 𝐼 ) → ( { 𝑁 } ∪ { 𝑛𝑉 ∣ ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { 𝑁 , 𝑛 } ⊆ 𝑒 } ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼𝑖 ) } ) )
19 6 18 eqtrd ( ( 𝑁𝑉 ∧ Fun 𝐼 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ ∃ 𝑖 ∈ dom 𝐼 { 𝑁 , 𝑛 } ⊆ ( 𝐼𝑖 ) } ) )