Step |
Hyp |
Ref |
Expression |
1 |
|
dfclnbgr4.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
dfclnbgr2 |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) ) |
4 |
|
undif2 |
⊢ ( { 𝑁 } ∪ ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ∖ { 𝑁 } ) ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
5 |
|
rabdif |
⊢ ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ∖ { 𝑁 } ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } |
6 |
5
|
uneq2i |
⊢ ( { 𝑁 } ∪ ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ∖ { 𝑁 } ) ) = ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
7 |
4 6
|
eqtr3i |
⊢ ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) = ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
8 |
1 2
|
dfnbgr2 |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
9 |
8
|
eqcomd |
⊢ ( 𝑁 ∈ 𝑉 → { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } = ( 𝐺 NeighbVtx 𝑁 ) ) |
10 |
9
|
uneq2d |
⊢ ( 𝑁 ∈ 𝑉 → ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
11 |
7 10
|
eqtrid |
⊢ ( 𝑁 ∈ 𝑉 → ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
12 |
3 11
|
eqtrd |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |