Metamath Proof Explorer


Theorem dfcnvrefrel4

Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024)

Ref Expression
Assertion dfcnvrefrel4 ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ I ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 df-cnvrefrel ( CnvRefRel 𝑅 ↔ ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) )
2 cnvref4 ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ 𝑅 ⊆ I ) )
3 1 2 bianim ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ I ∧ Rel 𝑅 ) )