Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | dfcnvrefrel4 | ⊢ ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ I ∧ Rel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnvrefrel | ⊢ ( CnvRefRel 𝑅 ↔ ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ) | |
2 | cnvref4 | ⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ 𝑅 ⊆ I ) ) | |
3 | 1 2 | bianim | ⊢ ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ I ∧ Rel 𝑅 ) ) |