Metamath Proof Explorer


Theorem dfcnvrefrel5

Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024)

Ref Expression
Assertion dfcnvrefrel5 ( CnvRefRel 𝑅 ↔ ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑥 = 𝑦 ) ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 dfcnvrefrel4 ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ I ∧ Rel 𝑅 ) )
2 cnvref5 ( Rel 𝑅 → ( 𝑅 ⊆ I ↔ ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑥 = 𝑦 ) ) )
3 1 2 bianim ( CnvRefRel 𝑅 ↔ ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦𝑥 = 𝑦 ) ∧ Rel 𝑅 ) )