| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-cnvrefrels | 
							⊢  CnvRefRels   =  (  CnvRefs   ∩   Rels  )  | 
						
						
							| 2 | 
							
								
							 | 
							df-cnvrefs | 
							⊢  CnvRefs   =  { 𝑟  ∣  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) ) ◡  S  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) ) }  | 
						
						
							| 3 | 
							
								
							 | 
							dmexg | 
							⊢ ( 𝑟  ∈  V  →  dom  𝑟  ∈  V )  | 
						
						
							| 4 | 
							
								3
							 | 
							elv | 
							⊢ dom  𝑟  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							rnexg | 
							⊢ ( 𝑟  ∈  V  →  ran  𝑟  ∈  V )  | 
						
						
							| 6 | 
							
								5
							 | 
							elv | 
							⊢ ran  𝑟  ∈  V  | 
						
						
							| 7 | 
							
								4 6
							 | 
							xpex | 
							⊢ ( dom  𝑟  ×  ran  𝑟 )  ∈  V  | 
						
						
							| 8 | 
							
								
							 | 
							inex2g | 
							⊢ ( ( dom  𝑟  ×  ran  𝑟 )  ∈  V  →  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ∈  V )  | 
						
						
							| 9 | 
							
								
							 | 
							brcnvssr | 
							⊢ ( (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ∈  V  →  ( (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) ) ◡  S  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ↔  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) ) ) )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							mp2b | 
							⊢ ( (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) ) ◡  S  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ↔  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							elrels6 | 
							⊢ ( 𝑟  ∈  V  →  ( 𝑟  ∈   Rels   ↔  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  =  𝑟 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							elv | 
							⊢ ( 𝑟  ∈   Rels   ↔  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  =  𝑟 )  | 
						
						
							| 13 | 
							
								12
							 | 
							biimpi | 
							⊢ ( 𝑟  ∈   Rels   →  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  =  𝑟 )  | 
						
						
							| 14 | 
							
								13
							 | 
							sseq1d | 
							⊢ ( 𝑟  ∈   Rels   →  ( ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ↔  𝑟  ⊆  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) ) ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							bitrid | 
							⊢ ( 𝑟  ∈   Rels   →  ( (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) ) ◡  S  ( 𝑟  ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ↔  𝑟  ⊆  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) ) ) )  | 
						
						
							| 16 | 
							
								1 2 15
							 | 
							abeqinbi | 
							⊢  CnvRefRels   =  { 𝑟  ∈   Rels   ∣  𝑟  ⊆  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) ) }  |