Step |
Hyp |
Ref |
Expression |
1 |
|
dfco2 |
⊢ ( 𝐴 ∘ 𝐵 ) = ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) |
2 |
|
vex |
⊢ 𝑧 ∈ V |
3 |
2
|
eliniseg |
⊢ ( 𝑥 ∈ V → ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ↔ 𝑧 𝐵 𝑥 ) ) |
4 |
3
|
elv |
⊢ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ↔ 𝑧 𝐵 𝑥 ) |
5 |
|
vex |
⊢ 𝑥 ∈ V |
6 |
2 5
|
brelrn |
⊢ ( 𝑧 𝐵 𝑥 → 𝑥 ∈ ran 𝐵 ) |
7 |
4 6
|
sylbi |
⊢ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) → 𝑥 ∈ ran 𝐵 ) |
8 |
|
vex |
⊢ 𝑤 ∈ V |
9 |
5 8
|
elimasn |
⊢ ( 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑤 〉 ∈ 𝐴 ) |
10 |
5 8
|
opeldm |
⊢ ( 〈 𝑥 , 𝑤 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) |
11 |
9 10
|
sylbi |
⊢ ( 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) → 𝑥 ∈ dom 𝐴 ) |
12 |
7 11
|
anim12ci |
⊢ ( ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ) → ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑦 = 〈 𝑧 , 𝑤 〉 ∧ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ) ) → ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵 ) ) |
14 |
13
|
exlimivv |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑦 = 〈 𝑧 , 𝑤 〉 ∧ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ) ) → ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵 ) ) |
15 |
|
elxp |
⊢ ( 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑦 = 〈 𝑧 , 𝑤 〉 ∧ ( 𝑧 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑤 ∈ ( 𝐴 “ { 𝑥 } ) ) ) ) |
16 |
|
elin |
⊢ ( 𝑥 ∈ ( dom 𝐴 ∩ ran 𝐵 ) ↔ ( 𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ ran 𝐵 ) ) |
17 |
14 15 16
|
3imtr4i |
⊢ ( 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) → 𝑥 ∈ ( dom 𝐴 ∩ ran 𝐵 ) ) |
18 |
|
ssel |
⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝑥 ∈ ( dom 𝐴 ∩ ran 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
19 |
17 18
|
syl5 |
⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) → 𝑥 ∈ 𝐶 ) ) |
20 |
19
|
pm4.71rd |
⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) ) |
21 |
20
|
exbidv |
⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( ∃ 𝑥 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) ) |
22 |
|
rexv |
⊢ ( ∃ 𝑥 ∈ V 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |
23 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) |
24 |
21 22 23
|
3bitr4g |
⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( ∃ 𝑥 ∈ V 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) |
25 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ V 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |
26 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |
27 |
24 25 26
|
3bitr4g |
⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝑦 ∈ ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) ) |
28 |
27
|
eqrdv |
⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) = ∪ 𝑥 ∈ 𝐶 ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |
29 |
1 28
|
eqtrid |
⊢ ( ( dom 𝐴 ∩ ran 𝐵 ) ⊆ 𝐶 → ( 𝐴 ∘ 𝐵 ) = ∪ 𝑥 ∈ 𝐶 ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |