| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfco2 | ⊢ ( 𝐴  ∘  𝐵 )  =  ∪  𝑥  ∈  V ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) | 
						
							| 2 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 3 | 2 | eliniseg | ⊢ ( 𝑥  ∈  V  →  ( 𝑧  ∈  ( ◡ 𝐵  “  { 𝑥 } )  ↔  𝑧 𝐵 𝑥 ) ) | 
						
							| 4 | 3 | elv | ⊢ ( 𝑧  ∈  ( ◡ 𝐵  “  { 𝑥 } )  ↔  𝑧 𝐵 𝑥 ) | 
						
							| 5 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 6 | 2 5 | brelrn | ⊢ ( 𝑧 𝐵 𝑥  →  𝑥  ∈  ran  𝐵 ) | 
						
							| 7 | 4 6 | sylbi | ⊢ ( 𝑧  ∈  ( ◡ 𝐵  “  { 𝑥 } )  →  𝑥  ∈  ran  𝐵 ) | 
						
							| 8 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 9 | 5 8 | elimasn | ⊢ ( 𝑤  ∈  ( 𝐴  “  { 𝑥 } )  ↔  〈 𝑥 ,  𝑤 〉  ∈  𝐴 ) | 
						
							| 10 | 5 8 | opeldm | ⊢ ( 〈 𝑥 ,  𝑤 〉  ∈  𝐴  →  𝑥  ∈  dom  𝐴 ) | 
						
							| 11 | 9 10 | sylbi | ⊢ ( 𝑤  ∈  ( 𝐴  “  { 𝑥 } )  →  𝑥  ∈  dom  𝐴 ) | 
						
							| 12 | 7 11 | anim12ci | ⊢ ( ( 𝑧  ∈  ( ◡ 𝐵  “  { 𝑥 } )  ∧  𝑤  ∈  ( 𝐴  “  { 𝑥 } ) )  →  ( 𝑥  ∈  dom  𝐴  ∧  𝑥  ∈  ran  𝐵 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑦  =  〈 𝑧 ,  𝑤 〉  ∧  ( 𝑧  ∈  ( ◡ 𝐵  “  { 𝑥 } )  ∧  𝑤  ∈  ( 𝐴  “  { 𝑥 } ) ) )  →  ( 𝑥  ∈  dom  𝐴  ∧  𝑥  ∈  ran  𝐵 ) ) | 
						
							| 14 | 13 | exlimivv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑦  =  〈 𝑧 ,  𝑤 〉  ∧  ( 𝑧  ∈  ( ◡ 𝐵  “  { 𝑥 } )  ∧  𝑤  ∈  ( 𝐴  “  { 𝑥 } ) ) )  →  ( 𝑥  ∈  dom  𝐴  ∧  𝑥  ∈  ran  𝐵 ) ) | 
						
							| 15 |  | elxp | ⊢ ( 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  ↔  ∃ 𝑧 ∃ 𝑤 ( 𝑦  =  〈 𝑧 ,  𝑤 〉  ∧  ( 𝑧  ∈  ( ◡ 𝐵  “  { 𝑥 } )  ∧  𝑤  ∈  ( 𝐴  “  { 𝑥 } ) ) ) ) | 
						
							| 16 |  | elin | ⊢ ( 𝑥  ∈  ( dom  𝐴  ∩  ran  𝐵 )  ↔  ( 𝑥  ∈  dom  𝐴  ∧  𝑥  ∈  ran  𝐵 ) ) | 
						
							| 17 | 14 15 16 | 3imtr4i | ⊢ ( 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  →  𝑥  ∈  ( dom  𝐴  ∩  ran  𝐵 ) ) | 
						
							| 18 |  | ssel | ⊢ ( ( dom  𝐴  ∩  ran  𝐵 )  ⊆  𝐶  →  ( 𝑥  ∈  ( dom  𝐴  ∩  ran  𝐵 )  →  𝑥  ∈  𝐶 ) ) | 
						
							| 19 | 17 18 | syl5 | ⊢ ( ( dom  𝐴  ∩  ran  𝐵 )  ⊆  𝐶  →  ( 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  →  𝑥  ∈  𝐶 ) ) | 
						
							| 20 | 19 | pm4.71rd | ⊢ ( ( dom  𝐴  ∩  ran  𝐵 )  ⊆  𝐶  →  ( 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  ↔  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) ) ) | 
						
							| 21 | 20 | exbidv | ⊢ ( ( dom  𝐴  ∩  ran  𝐵 )  ⊆  𝐶  →  ( ∃ 𝑥 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) ) ) | 
						
							| 22 |  | rexv | ⊢ ( ∃ 𝑥  ∈  V 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  ↔  ∃ 𝑥 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) | 
						
							| 23 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐶 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) ) | 
						
							| 24 | 21 22 23 | 3bitr4g | ⊢ ( ( dom  𝐴  ∩  ran  𝐵 )  ⊆  𝐶  →  ( ∃ 𝑥  ∈  V 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  ↔  ∃ 𝑥  ∈  𝐶 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) ) | 
						
							| 25 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  V ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  ↔  ∃ 𝑥  ∈  V 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) | 
						
							| 26 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝐶 ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  ↔  ∃ 𝑥  ∈  𝐶 𝑦  ∈  ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) | 
						
							| 27 | 24 25 26 | 3bitr4g | ⊢ ( ( dom  𝐴  ∩  ran  𝐵 )  ⊆  𝐶  →  ( 𝑦  ∈  ∪  𝑥  ∈  V ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  ↔  𝑦  ∈  ∪  𝑥  ∈  𝐶 ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) ) | 
						
							| 28 | 27 | eqrdv | ⊢ ( ( dom  𝐴  ∩  ran  𝐵 )  ⊆  𝐶  →  ∪  𝑥  ∈  V ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) )  =  ∪  𝑥  ∈  𝐶 ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) | 
						
							| 29 | 1 28 | eqtrid | ⊢ ( ( dom  𝐴  ∩  ran  𝐵 )  ⊆  𝐶  →  ( 𝐴  ∘  𝐵 )  =  ∪  𝑥  ∈  𝐶 ( ( ◡ 𝐵  “  { 𝑥 } )  ×  ( 𝐴  “  { 𝑥 } ) ) ) |