| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-conngr |
⊢ ConnGraph = { 𝑔 ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } |
| 2 |
|
eqid |
⊢ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 ) |
| 3 |
2
|
0pthonv |
⊢ ( 𝑘 ∈ ( Vtx ‘ 𝑔 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑘 ) 𝑝 ) |
| 4 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) = ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑘 ) ) |
| 5 |
4
|
breqd |
⊢ ( 𝑛 = 𝑘 → ( 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑘 ) 𝑝 ) ) |
| 6 |
5
|
2exbidv |
⊢ ( 𝑛 = 𝑘 → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑘 ) 𝑝 ) ) |
| 7 |
6
|
ralsng |
⊢ ( 𝑘 ∈ ( Vtx ‘ 𝑔 ) → ( ∀ 𝑛 ∈ { 𝑘 } ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑘 ) 𝑝 ) ) |
| 8 |
3 7
|
mpbird |
⊢ ( 𝑘 ∈ ( Vtx ‘ 𝑔 ) → ∀ 𝑛 ∈ { 𝑘 } ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) |
| 9 |
|
difsnid |
⊢ ( 𝑘 ∈ ( Vtx ‘ 𝑔 ) → ( ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∪ { 𝑘 } ) = ( Vtx ‘ 𝑔 ) ) |
| 10 |
9
|
eqcomd |
⊢ ( 𝑘 ∈ ( Vtx ‘ 𝑔 ) → ( Vtx ‘ 𝑔 ) = ( ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∪ { 𝑘 } ) ) |
| 11 |
10
|
raleqdv |
⊢ ( 𝑘 ∈ ( Vtx ‘ 𝑔 ) → ( ∀ 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑛 ∈ ( ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∪ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
| 12 |
|
ralunb |
⊢ ( ∀ 𝑛 ∈ ( ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∪ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ( ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ∧ ∀ 𝑛 ∈ { 𝑘 } ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
| 13 |
11 12
|
bitrdi |
⊢ ( 𝑘 ∈ ( Vtx ‘ 𝑔 ) → ( ∀ 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ( ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ∧ ∀ 𝑛 ∈ { 𝑘 } ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) ) |
| 14 |
8 13
|
mpbiran2d |
⊢ ( 𝑘 ∈ ( Vtx ‘ 𝑔 ) → ( ∀ 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
| 15 |
14
|
ralbiia |
⊢ ( ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) |
| 16 |
|
fvex |
⊢ ( Vtx ‘ 𝑔 ) ∈ V |
| 17 |
|
raleq |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → ( ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
| 18 |
17
|
raleqbi1dv |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → ( ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
| 19 |
|
difeq1 |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → ( 𝑣 ∖ { 𝑘 } ) = ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ) |
| 20 |
19
|
raleqdv |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → ( ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
| 21 |
20
|
raleqbi1dv |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → ( ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
| 22 |
18 21
|
bibi12d |
⊢ ( 𝑣 = ( Vtx ‘ 𝑔 ) → ( ( ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ↔ ( ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) ) |
| 23 |
16 22
|
sbcie |
⊢ ( [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ( ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ↔ ( ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
| 24 |
15 23
|
mpbir |
⊢ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ( ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) |
| 25 |
|
sbcbi1 |
⊢ ( [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ( ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) → ( [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) ) |
| 26 |
24 25
|
ax-mp |
⊢ ( [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ↔ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 ) |
| 27 |
26
|
abbii |
⊢ { 𝑔 ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ 𝑣 ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } = { 𝑔 ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } |
| 28 |
1 27
|
eqtri |
⊢ ConnGraph = { 𝑔 ∣ [ ( Vtx ‘ 𝑔 ) / 𝑣 ] ∀ 𝑘 ∈ 𝑣 ∀ 𝑛 ∈ ( 𝑣 ∖ { 𝑘 } ) ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝑘 ( PathsOn ‘ 𝑔 ) 𝑛 ) 𝑝 } |