| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-coss | 
							⊢  ≀  𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢 ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑅 𝑦 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							elecALTV | 
							⊢ ( ( 𝑢  ∈  V  ∧  𝑥  ∈  V )  →  ( 𝑥  ∈  [ 𝑢 ] 𝑅  ↔  𝑢 𝑅 𝑥 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							el2v | 
							⊢ ( 𝑥  ∈  [ 𝑢 ] 𝑅  ↔  𝑢 𝑅 𝑥 )  | 
						
						
							| 4 | 
							
								
							 | 
							elecALTV | 
							⊢ ( ( 𝑢  ∈  V  ∧  𝑦  ∈  V )  →  ( 𝑦  ∈  [ 𝑢 ] 𝑅  ↔  𝑢 𝑅 𝑦 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							el2v | 
							⊢ ( 𝑦  ∈  [ 𝑢 ] 𝑅  ↔  𝑢 𝑅 𝑦 )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							anbi12i | 
							⊢ ( ( 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝑦  ∈  [ 𝑢 ] 𝑅 )  ↔  ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑅 𝑦 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							exbii | 
							⊢ ( ∃ 𝑢 ( 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝑦  ∈  [ 𝑢 ] 𝑅 )  ↔  ∃ 𝑢 ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑅 𝑦 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							opabbii | 
							⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢 ( 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝑦  ∈  [ 𝑢 ] 𝑅 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢 ( 𝑢 𝑅 𝑥  ∧  𝑢 𝑅 𝑦 ) }  | 
						
						
							| 9 | 
							
								1 8
							 | 
							eqtr4i | 
							⊢  ≀  𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢 ( 𝑥  ∈  [ 𝑢 ] 𝑅  ∧  𝑦  ∈  [ 𝑢 ] 𝑅 ) }  |