Metamath Proof Explorer


Theorem dfdif2

Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004)

Ref Expression
Assertion dfdif2 ( 𝐴𝐵 ) = { 𝑥𝐴 ∣ ¬ 𝑥𝐵 }

Proof

Step Hyp Ref Expression
1 df-dif ( 𝐴𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) }
2 df-rab { 𝑥𝐴 ∣ ¬ 𝑥𝐵 } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) }
3 1 2 eqtr4i ( 𝐴𝐵 ) = { 𝑥𝐴 ∣ ¬ 𝑥𝐵 }