Metamath Proof Explorer


Theorem dfdisj2

Description: Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017)

Ref Expression
Assertion dfdisj2 ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥𝐴𝑦𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-disj ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 )
2 df-rmo ( ∃* 𝑥𝐴 𝑦𝐵 ↔ ∃* 𝑥 ( 𝑥𝐴𝑦𝐵 ) )
3 2 albii ( ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥𝐴𝑦𝐵 ) )
4 1 3 bitri ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥𝐴𝑦𝐵 ) )