Description: Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | dfdisj2 | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
2 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
3 | 2 | albii | ⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
4 | 1 3 | bitri | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |