Metamath Proof Explorer
		
		
		
		Description:  Alternate definition of the disjoint relation predicate, cf.
       dffunALTV5 .  (Contributed by Peter Mazsa, 5-Sep-2021)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					dfdisjALTV5 | 
					⊢  (  Disj  𝑅  ↔  ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  Rel  𝑅 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfdisjALTV2 | 
							⊢ (  Disj  𝑅  ↔  (  ≀  ◡ 𝑅  ⊆   I   ∧  Rel  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cosscnvssid5 | 
							⊢ ( (  ≀  ◡ 𝑅  ⊆   I   ∧  Rel  𝑅 )  ↔  ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  Rel  𝑅 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							bitri | 
							⊢ (  Disj  𝑅  ↔  ( ∀ 𝑢  ∈  dom  𝑅 ∀ 𝑣  ∈  dom  𝑅 ( 𝑢  =  𝑣  ∨  ( [ 𝑢 ] 𝑅  ∩  [ 𝑣 ] 𝑅 )  =  ∅ )  ∧  Rel  𝑅 ) )  |