Metamath Proof Explorer


Theorem dfdm2

Description: Alternate definition of domain df-dm that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010)

Ref Expression
Assertion dfdm2 dom 𝐴 = ( 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 cnvco ( 𝐴𝐴 ) = ( 𝐴 𝐴 )
2 cocnvcnv2 ( 𝐴 𝐴 ) = ( 𝐴𝐴 )
3 1 2 eqtri ( 𝐴𝐴 ) = ( 𝐴𝐴 )
4 3 unieqi ( 𝐴𝐴 ) = ( 𝐴𝐴 )
5 4 unieqi ( 𝐴𝐴 ) = ( 𝐴𝐴 )
6 unidmrn ( 𝐴𝐴 ) = ( dom ( 𝐴𝐴 ) ∪ ran ( 𝐴𝐴 ) )
7 5 6 eqtr3i ( 𝐴𝐴 ) = ( dom ( 𝐴𝐴 ) ∪ ran ( 𝐴𝐴 ) )
8 df-rn ran 𝐴 = dom 𝐴
9 8 eqcomi dom 𝐴 = ran 𝐴
10 dmcoeq ( dom 𝐴 = ran 𝐴 → dom ( 𝐴𝐴 ) = dom 𝐴 )
11 9 10 ax-mp dom ( 𝐴𝐴 ) = dom 𝐴
12 rncoeq ( dom 𝐴 = ran 𝐴 → ran ( 𝐴𝐴 ) = ran 𝐴 )
13 9 12 ax-mp ran ( 𝐴𝐴 ) = ran 𝐴
14 dfdm4 dom 𝐴 = ran 𝐴
15 13 14 eqtr4i ran ( 𝐴𝐴 ) = dom 𝐴
16 11 15 uneq12i ( dom ( 𝐴𝐴 ) ∪ ran ( 𝐴𝐴 ) ) = ( dom 𝐴 ∪ dom 𝐴 )
17 unidm ( dom 𝐴 ∪ dom 𝐴 ) = dom 𝐴
18 7 16 17 3eqtrri dom 𝐴 = ( 𝐴𝐴 )