Step |
Hyp |
Ref |
Expression |
1 |
|
cnvco |
⊢ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ( ◡ 𝐴 ∘ ◡ ◡ 𝐴 ) |
2 |
|
cocnvcnv2 |
⊢ ( ◡ 𝐴 ∘ ◡ ◡ 𝐴 ) = ( ◡ 𝐴 ∘ 𝐴 ) |
3 |
1 2
|
eqtri |
⊢ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ( ◡ 𝐴 ∘ 𝐴 ) |
4 |
3
|
unieqi |
⊢ ∪ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ∪ ( ◡ 𝐴 ∘ 𝐴 ) |
5 |
4
|
unieqi |
⊢ ∪ ∪ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ∪ ∪ ( ◡ 𝐴 ∘ 𝐴 ) |
6 |
|
unidmrn |
⊢ ∪ ∪ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ( dom ( ◡ 𝐴 ∘ 𝐴 ) ∪ ran ( ◡ 𝐴 ∘ 𝐴 ) ) |
7 |
5 6
|
eqtr3i |
⊢ ∪ ∪ ( ◡ 𝐴 ∘ 𝐴 ) = ( dom ( ◡ 𝐴 ∘ 𝐴 ) ∪ ran ( ◡ 𝐴 ∘ 𝐴 ) ) |
8 |
|
df-rn |
⊢ ran 𝐴 = dom ◡ 𝐴 |
9 |
8
|
eqcomi |
⊢ dom ◡ 𝐴 = ran 𝐴 |
10 |
|
dmcoeq |
⊢ ( dom ◡ 𝐴 = ran 𝐴 → dom ( ◡ 𝐴 ∘ 𝐴 ) = dom 𝐴 ) |
11 |
9 10
|
ax-mp |
⊢ dom ( ◡ 𝐴 ∘ 𝐴 ) = dom 𝐴 |
12 |
|
rncoeq |
⊢ ( dom ◡ 𝐴 = ran 𝐴 → ran ( ◡ 𝐴 ∘ 𝐴 ) = ran ◡ 𝐴 ) |
13 |
9 12
|
ax-mp |
⊢ ran ( ◡ 𝐴 ∘ 𝐴 ) = ran ◡ 𝐴 |
14 |
|
dfdm4 |
⊢ dom 𝐴 = ran ◡ 𝐴 |
15 |
13 14
|
eqtr4i |
⊢ ran ( ◡ 𝐴 ∘ 𝐴 ) = dom 𝐴 |
16 |
11 15
|
uneq12i |
⊢ ( dom ( ◡ 𝐴 ∘ 𝐴 ) ∪ ran ( ◡ 𝐴 ∘ 𝐴 ) ) = ( dom 𝐴 ∪ dom 𝐴 ) |
17 |
|
unidm |
⊢ ( dom 𝐴 ∪ dom 𝐴 ) = dom 𝐴 |
18 |
7 16 17
|
3eqtrri |
⊢ dom 𝐴 = ∪ ∪ ( ◡ 𝐴 ∘ 𝐴 ) |