Metamath Proof Explorer


Theorem dfdm4

Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfdm4 dom 𝐴 = ran 𝐴

Proof

Step Hyp Ref Expression
1 vex 𝑦 ∈ V
2 vex 𝑥 ∈ V
3 1 2 brcnv ( 𝑦 𝐴 𝑥𝑥 𝐴 𝑦 )
4 3 exbii ( ∃ 𝑦 𝑦 𝐴 𝑥 ↔ ∃ 𝑦 𝑥 𝐴 𝑦 )
5 4 abbii { 𝑥 ∣ ∃ 𝑦 𝑦 𝐴 𝑥 } = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 }
6 dfrn2 ran 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑦 𝐴 𝑥 }
7 df-dm dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 }
8 5 6 7 3eqtr4ri dom 𝐴 = ran 𝐴